Проектирование и строительство нормативно-методические документы arrow Автодороги arrow Указание Указания по применению наземной стереофотограмметрической съемки в изысканиях автомобильны  
25.09.2018
    
Указание Указания по применению наземной стереофотограмметрической съемки в изысканиях автомобильны

МИНИСТЕРСТВО СТРОИТЕЛЬСТВА И ЭКСПЛУАТАЦИИ
АВТОМОБИЛЬНЫХ ДОРОГ РСФСР

ГОСУДАРСТВЕННЫЙ ДОРОЖНЫЙ ПРОЕКТНО-ИЗЫСКАТЕЛЬСКИЙ
И НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ГИПРОДОРНИИ

УКАЗАНИЯ ПО ПРИМЕНЕНИЮ
НАЗЕМНОЙ СТЕРЕОФОТОГРАММЕТРИЧЕСКОЙ
СЪЕМКИ В ИЗЫСКАНИЯХ АВТОМОБИЛЬНЫХ
ДОРОГ

Утверждены Минавтодором

РСФСР

Протокол № 3 от 26 января

1976 г.

(Вводятся впервые)

Москва 1977

В Гипродорнии в 1971 - 1975 гг. проведены научно-исследовательские работы, направленные на совершенствование методов изысканий автомобильных дорог с использованием фототеодолитной съемки. Разработан ряд новых аналитических способов, алгоритмов и программ для ЭВМ типа БЭСМ-4, М-222, Наири-С, позволяющих значительно сократить сроки проведения полевых геодезических работ по обоснованию съемки и упростить камеральные фотограмметрические процессы.

В настоящих «Указаниях» изложены методы и приемы полевых и камеральных работ, описаны современные технологические схемы производства фототеодолитной съемки, инструменты и приборы, а также определена рациональная сфера применения этого метода.

Методика полевых и камеральных работ стереофотограмметрической съемки излагается с учетом специфики автодорожных изысканий, поэтому, кроме общих зависимостей и положений метода, описываются способы аналитических решений задач полевых и камеральных процессов при помощи ЭВМ, приемы измерений по стереомодели местности элементов трассы и инженерных сооружений, составление топопланов, фронтальных планов, продольных профилей и поперечников, а также методы перенесения проекта в натуру с использованием фототеодолитных снимков.

Данные «Указания» составлены в секторе изысканий и проектирования автодорог Гипродорнии канд. техн. наук Г.П. Кудрявцевым, ст. науч. сотр. Э.В. Масловским, канд. тех. наук П.Н. Бруевичем под общей редакцией Г.П. Кудрявцева.

Замечания и предложения просим направлять по адресу:

109089, Москва, Ж-89, наб. Мориса Тореза, 34, Гипродорнии.

Зам. директора по научной работе доцент,

канд. техн. наук А.П. ВАСИЛЬЕВ

1. ОСНОВЫ НАЗЕМНОЙ СТЕРЕОФОТОГРАММЕТРИЧЕСКОЙ СЪЕМКИ

1.1. Основные положения, фототеодолиты и принадлежности

1.1.1. Наземную стереофотограмметрическую (фототеодолитную) съемку применяют при изысканиях новых и реконструкции существующих автомобильных дорог на стадиях технического проекта и рабочих чертежей, а также для съемок инженерных сооружений и участков местности в целях определения габаритных размеров, величин деформации и осадок, объемов земляных масс.

1.1.2. Фототеодолитной съемкой покрывают отдельные сложные участки проектируемой трассы, связанные со значительными трудностями в проведении тахеометрической и мензульной съемок. Такими участками могут быть территории: скальных прижимов и узких каньонообразных ущелий; крутых морских, озерных и речных берегов; осыпей и оползневых участков; мостовых переходов с высокими крутыми берегами; промышленных застроенных площадок (ДСУ, автовокзалов, карьеров и т.п.); существующих мостов и транспортных развязок; путевого развития железнодорожных станций и т.д.

Фототеодолитную съемку применяют для получения крупномасштабных топографических планов на участках местности, где аэрофотосъемочные материалы не обеспечивают необходимой детализации и точности, а также для создания планово-высотного обоснования аэрофотосъемки.

1.1.3. Полевые материалы фототеодолитной съемки используют для составления в камеральных условиях крупномасштабных топографических планов, фронтальных топо- и фотопланов, для создания продольных разрезов, продольных и поперечных профилей по заданным направлениям при проектировании трассы, для определения интенсивности и режимов движения транспорта на существующих дорогах.

1.2. Системы координат. Элементы ориентирования.
Связь между координатами точек снимка и местности

1.2.1. В основу метода наземной стереофотограмметрической съемки положены геометрические соотношения между положением определяемых точек местности и их изображениями на снимках, составляющих стереопару.

При стереофотограмметрических измерениях для выражения пространственного положения определяемой точки в правой прямоугольной системе координат оси Zф и Xф фотограмметрической системы совмещают с соответствующими проекциями осей снимка, а ось Yф располагают вдоль оптической оси фотокамеры.

Положение снимка относительно систем координат определяется элементами внутреннего (эво) и внешнего ориентирования (ЭВО). К первой группе элементов, определяющей положение центра проекции относительно снимка, относят фокусное расстояние камеры fк и координаты x0 и z0, главной точки 0 (рис. 1), которая является началом картинной системы координат снимка - 0xz.

Положение в пространства связки лучей в момент фотографирования определяют геодезической системой координат 0xyz или ЭВО, состоящей из координат точки фотографирования - XS, YS, ZS, дирекционного угла s оптической оси фотокамеры, угла наклона оптической оси w и угла поворота c снимка (рис. 2).

Положение одиночного снимка будет определено, если известны девять элементов ориентирования:

fк, x0, z0, XS, YS, ZS, s, w, c.

Так как съемку с концов базиса производят одной и той же камерой, то эво пары снимков можно считать одинаковыми.

Положение пары снимков определяет три элемента внутреннего и 12 внешнего ориентирования:

fк, x0, z0, XS1, YS1, ZS1, s1, w1, c1, XS2, YS2, ZS2, s2, w2, c2

Рис. 1

Рис. 2

Применяют также систему элементов внешнего ориентирования, исключающую определение координат правого центра фотографирования:

XS, YS, ZS, aВ, j, w, c, В, DН, g, w2, c2,

где aВ - дирекционный угол базиса;

j - горизонтальный угол в левом конце базиса, образованный базисом и оптической осью камеры;

В - горизонтальное положение базиса;

DН - превышение правого конца базиса относительно левого;

g - угол конвергенции, горизонтальный угол между направлениями оптических осей в концах базиса.

1.2.2. При нормальном случае съемки зависимость между фотограмметрическими координатами точек местности и координатами их изображений на снимках выражают следующими формулами:

,                                                    (1)

где x1, z1 - координаты определяемой точки на левом снимке;

p = x1 - x2 - горизонтальный (продольный) параллакс определяемой точки;

x2 - абсцисса точки на правом снимке.

1.2.3. При равноотклоненном случае съемки:

                           (2)

где j - угол между направлениями оптической оси фотокамеры и базиса фотографирования.

                             (21)

где j′ - угол отклонения оптической оси от нормали к базису фотографирования.

1.2.4. При равнонаклоненном случае съемки:

,                                          (3)

где

                              (4)

Или

1.2.5. Связь между координатами точек снимка и местности в общем случае съемки выражается зависимостями:

,                                                           (5)

где

                                                  (6)

Величины a1,2,3, b1,2,3, c1,2,3, - направляющие косинусы, являющиеся функциями угловых элементов внешнего ориентирования в принятой фотограмметрической системе координат:

                                     (7)

где a - угол поворота оптической оси фотокамеры в горизонтальной плоскости.

Величину N в зависимости от пространственного положения базиса фотографирования в базисной системе фотограмметрических координат выражают через координаты левого (верхнего) центра фотографирования и соответствующие координаты определяемой точки в системах левого (верхнего) и правого (нижнего) снимков, т.е.

                                                         (8)

где

1.2.6. Фотограмметрические Xф, Yф, Zф и геодезические XГ, YГ, ZГ - координаты точек связаны следующими зависимостями:

                                  (9)

где XS1Г, YS1Г, ZS1Г,- геодезические координаты левого конца базиса фотографирования;

s1 - дирекционный угол оптической оси фотокамеры на левом конце базиса;

DHR - поправка за кривизну Земли и рефракцию.

Для перехода от геодезических координат к фотограмметрическим используют формулы:

                          (10)

При обработке снимков на универсальных приборах задача перехода от фотограмметрических координат к геодезическим решается механически.

В общем случае съемки для определения геодезических координат точки местности необходимо найти направляющие косинусы для левого и правого снимков, вычислить пространственные координаты определяемой точки на них, используя предварительно измеренные плоские координаты определяемой точки и геодезические координаты точек местности.

1.3. Виды фототеодолитной съемки

В зависимости от пространственного положения фотопластинки в момент экспонирования различают пять основных случаев фототеодолитной съемки: нормальный, равноотклоненный, равнонаклоненный, конвергентный и общий.

При нормальном случае съемки (рис. 3) оптические оси фотокамеры на обоих концах базиса фотографирования горизонтальны и перпендикулярны ему, а оси хх фотоснимков горизонтальны, т.е.

Рис. 3

В равноотклоненном случае съемки (рис. 4) оптические оси фотокамер горизонтальны и параллельны между собой, но составляют с базисом фотографирования угол, отличающийся от 90°. Оси снимков горизонтальны, т.е.

В равнонаклоненном случае съемки: (рис. 6) оптические оси перпендикулярны к горизонтальной проекции базиса и наклонены к горизонту на один и тот же угол, а оси х-х снимков горизонтальны, т.е.

Рис. 4

Рис. 5

Рис. 6

В конвергентном случае съемки (рис. 5) оптические оси горизонтальны, но не параллельны друг другу, а оси х-х снимков горизонтальны, т.е.

В общем случае съемки снимки могут занимать произвольное положение, т.е.

.

Все перечисление случаи съемки применяют в практике изысканий и инженерных обследований:

равнонаклонный случай съемки - в сочетании с нормальным и равноотклоненным, если при фотографировании с горизонтальными оптическими осями объект съемки не охватывается по высоте;

конвергентный случай съемки - для увеличения перекрытия снимков при большем, чем расчетный, базисе фотографирования;

общий случай съемки - при фотографировании с качающейся опоры плоских участков местности, с катеров и шлюпок - крутых отвесных берегов морей, озер и рек, с жесткой опоры - застроенных или узких каньонообразных участков местности, а также труднодоступных обследуемых территорий. Общий случай съемки реализуется при любом пространственном положении базиса фотографирования аналитической камеральной обработкой материалов съемки.

1.4. Сведения из теории ошибок

1.4.1. Ошибки определения пространственных координат зависят от точности выдерживания или измерения элементов внешнего и внутреннего ориентирования снимков и точности измерения координат точек на снимках.

Формулы для подсчета средних квадратических ошибок пространственных фотограмметрических координат mYф, mXф, mZф, в зависимости от точности измерений плоских координат x, z, p и базиса фотографирования В имеют вид:

1) для нормального случая съемки:

                           (11)

2) для равноотклоненного случая:

                            (12)

Анализируя формулы (11) и (12), можно сделать следующие выводы:

ошибки продольного параллакса mp оказывают влияние на точность определения фотограмметрических координат пропорционально квадрату отстояния и обратно пропорционально величине базиса фотографирования;

ошибки параллакса mp влияют в большей степени на координату Yф, чем на Xф и Zф; при одинаковых отстояниях влияние ошибки mp более ощутимо на краях снимка при

x = max и z = max;

ошибки в абсциссах оказывают влияние только на точность определения координаты Xф;

ошибки в измерениях аппликат Z влияют только на точность определения координаты Zф;

ошибки в определении величины базиса фотографирования и угла отклонения оптической оси камеры влияют на точность фотограмметрических координат Xф, Yф, Zф;

ошибки в измерениях величины базиса приводят к изменению масштаба модели, причем их влияние возрастает с удалением от главных вертикали и горизонтали к краю снимка.

1.4.2. Ошибки в величинах элементов внутреннего ориентирования вызваны чаще всего неприжимом фотопластинок к плоскости прикладной рамки фотокамеры. Учет неприжима и уменьшение его влияния могут быть произведены следующими способами:

аналитическим с вычислением поправок в измеренные координаты точек снимка;

применением специальных устройств регистрации недопустимых величин неприжима;

использованием предварительно выверенных на плоскость фотопластинок.

При применении фототеодолита 19/1318 и ошибках измерений mx = mz = mq = 0,01 мм, mp = 0,005 мм предельно допустимая величина параллельного неприжима фотопластинки составляет для картинных координат x, z, а также p и q соответственно 0,03; 0,04; 0,02 и 0,04 мм.

Допустимый параллельный неприжим определяют по формуле

                                                            (13)

где m - ошибка измерений x, z, p или q.

При аналитическом способе обработки материалов съемки вычисление поправок в картинные (плоские) координаты определяемых точек нужно производить для каждой четверти снимка обрабатываемой стереопары по формулам:

                                        (14)

где , ,  - измеренные значения координат;

x1, z1, p - исправленные значения координат;

 - коэффициенты деформации стереопары,

где ,  - эталонное значение полуосей снимков;

, ,  - измеренное значение полуосей.

Поправки за неприжим вводят в тех случаях, если расхождения измеренных значений полуосей снимков и их эталонных значений превышают 0,03 мм.

1.4.3. Ошибки в угловых элементах внешнего ориентирования снимков влияют на точность определения картинных координат.

Для предвычислений допустимых ошибок в отклонении оптической оси от заданного положения используют следующие зависимости:

1) при ориентировании оптической оси камеры в горизонтальной плоскости

                                                       (15)

2) при наклоне оптической оси

                                                      (16)

Для той же фотокамеры и при mx = mz = 0,01 мм, x = 80 мм, z = 40 мм соответственно получим ±1¢; ±2¢; ±2¢; ±10². Таким образом, горизонтирование фотокамеры необходимо производить с ошибкой не более 10².

Для обеспечения точности измерения продольного параллакса ориентирование оптической оси камеры в пространстве производят с точностью - в горизонтальной плоскости ±5", а в вертикальной - ±2¢.

Допустимую ошибку крена пластинки mc для величин

определяют по формулам:

 для координаты X;                                                

 координаты Z;                                                 (17)

 для параллакса p при равных по величине,
но различных по направлениям координат левого и правого снимков.

Подставляя в формулу (17) x = 80 мм, z = 40 мм, mx = mz = ±0,01 мм, mp = 0,005 мм, получим ±1¢; ±0,5¢; ±0,2¢.

1.5. Расчет параметров съемки

1.5.1. К оптимальным параметрам фототеодолитной съемки, выполняемой нормальным, равноотклоненным и равнонаклоненным случаями, относят:

допустимое максимальное отстояние Ymax от фототеодолитной станции до дальнего плана съемки;

допустимое минимальное отстояние Ymin от фототеодолитной станции до переднего плана съемки;

длины базисов фотографирования;

допустимые превышения между левым и правым концами базиса фотографирования.

Расчет указанных параметров съемки выполняют с учетом необходимой точности конечных результатов, характеристик применяемой полевой и камеральной аппаратуры, размеров фотографируемого объекта, условий геодезических измерений по привязке фототеодолтных станций, контрольных и опорных точек.

1.5.2. Полезную площадь стереопары определяют по формуле

                                          (18)

где j0 -  угол поля изображения фототеодолита в горизонтальной плоскости;

 - коэффициент увеличения дальнего плана снимка, используемый для составления топоплана;

1:Мср    масштаб дальнего плана снимка;

1:Мпл -   масштаб составляемого плана.

1.5.3. Максимальное отстояние при графомеханической обработке материалов съемки определяют по формуле

                                                    (19)

где а - наибольшее удаление мостика отстояний от оси вращения проектирующих рычагов стереоавтографа;

К - отношение масштаба стереомодели к масштабу плана, вычерчиваемого координатографом.

Например, для стереоавтографа 1318 Народного предприятия Карл Цейсс (ГДР)

а = 400 мм; К = 2.

Максимальное отстояние, зависящее от допустимой ошибки определения положения точек местности mу, точности измерения продольного параллакса mр и значения параллаксов определяют по формуле

                                                                (20)

где my - допустимая ошибка в положении картографируемых объектов на местности.

Предвычисление максимального отстояния в зависимости от допустимого минимального масштаба изображения дальнего плана осуществляют по формуле

                                                      (21)

Минимальное отстояние при обработке на стереоаэрографе определяют по формуле (19), где принимают как наименьшее расстояние между мостиком отстояний и осью вращения рычагов.

У стереоавтографа 1318 величина аmin = 50 мм.

При обработке материалов съемки на стереокомпараторе допустимое минимальное отстояние определяют по формуле

                                                           (22)

где p - расход винта продольных параллаксов равный для «Стеко 1818» 75 мм.

Учитывая особенности стереоскопического зрения и технические особенности стереофотограмметрических приборов, минимальное отстояние определяют их соотношения Ymin ³ 4 В.

За окончательные значения максимальных отстояний принимают наименьшее значение, а для минимального отстояния - наибольшее.

1.5.4. Определение величины базиса фотографирования с достаточной для топографических целей точностью ведут по формуле

                                                            (23)

Учитывая предельные значения установки Bx в приборах камеральной обработки, наибольшую величину базиса фотографирования определяют по формуле

                                                            (24)

где М - знаменатель масштаба стереомодели.

1.5.5. В ряде случаев при производстве фототеодолитной съемки обрывистых склонов, когда плоскость фотопластинки имеет небольшие углы наклона относительно фронтальной плоскости проекции, колебания отстояний в пределах стереопары относительно невелики. Поэтому, для увеличения точности составляемых топопланов можно выполнять съемку с больших по величине, чем обычно, базисов фотографирования. Длины базисов и допустимые углы скосов оптической оси фотокамеры в этом случае определяют по формулам

                                            (25)

где B - длина базиса при его отклонении на угол j от плоскости проекции;

к - допустимое колебание продольного перекрытия снимков стереопары;

|Xmax|- максимальная абсолютная величина абсциссы на спинке равная 80 мм.

Плюс или минус в формулах соответствует углу скоса влево и вправо от нормали к базису.

Для предвычисления ожидаемых ошибок определения координат точек в зависимости от выбранных параметров съемки удобно пользоваться диаграммой ожидаемых ошибок, построенной по формулам (11) или (12).

Диаграмма абсолютных ошибок и пример пользования диаграммой приведены на (рис. 7).

ДИАГРАММА АБСОЛЮТНЫХ ОШИБОК

Рис. 7

1.5.6. Превышение между левой и правой станциями базиса фотографирования при камеральной обработке графомеханическим и аналитическим способами не должно превышать допустимого поперечного параллакса конкретного прибора в масштабе снимка.

Величина допустимого поперечного параллакса в стереоавтографе 1318 Нар. предп. К. Цейсс составляет ±20 мм, для стереоавтографа Карл Цейсс (ГДР) ±10 мм, для стереокомпаратора «Стеко 1818» ±10 мм, стекометра - ±40 мм.

2. ПОЛЕВЫЕ РАБОТЫ

Полевые работы, выполняемые фототеодолитной партией (2 - 3 ИТР и 4 - 5 рабочих), состоят из:

составления предварительного проекта съемки;

рекогносцировки участка съемки;

закрепления опорных, корректурных точек и проведение геодезических измерений по определению их геодезических координат;

маркировки опорных и корректурных точек, элементов ситуации;

фотографирования;

фотолабораторных работ и анализа результатов съемки;

пересъемка бракованных негативов;

дешифрирования.

2.1. Составление проекта съемки

2.1.1. Предполевые подготовительные работы включают: выбор участков обследуемой местности, где целесообразно применять фототеодолитную съемку и составлять ее проект, готовить фототеодолитный комплект и необходимое оборудование.

2.1.2. При изысканиях новых и реконструкции существующих автодорог, на основании изучения имеющегося картографического материала, вдоль проектируемой трассы намечают подлежащие фототеодолитной съемке участки, к которым относят:

незалесенные и слабозалесенные участки с косогорностью более 25°;

скальные прижимы и осыпи;

подходы к проектируемым или существующим тоннелям;

существующие транспортные развязки;

мостовые переходы через реки с высокими берегами;

промышленные площадки, застроенные территории автовокзалов, автохозяйств, дорожно-строительных управлений;

путевое развитие железнодорожных станций и пр.

2.1.3. Определив участки съемки, составляют ее проект, на основе которого после полевой рекогносцировки - рабочий проект. Для этой цели используют имеющийся крупномасштабный картографический и аэрофотосъемочный материал.

В работах по реконструкции существующих автодорог, а также при съемках небольших участков местности, площадью менее 1 км2, составляют сразу рабочий проект съемки на основе полевой рекогносцировки.

В проект съемки входит выбор оптимальных параметров съемки, определение целесообразных случаев съемки для каждого конкретного участка работ, исходя из условий рельефа, застроенности территории и обеспечения минимума работ по фотографированию, геодезической привязке фотостанций, корректурных и опорных точек, полного захвата фотографируемого объекта без «мертвых» зон и фотограмметрических разрывов.

2.1.4. Параметры съемки целесообразно выбирать в следующем порядке:

определяют по карте с уточнением после полевой рекогносцировки максимального отстояния Ymax от базиса фотографирования до дальнего плана и устанавливают возможность обработки дальнего плана на универсальных приборах. Если обработка невозможна, следует наметить условия для обеспечения съемки с графоаналитическим методом камеральной обработки (равнонаклоненный или общий случай съемки);

определяют по карте с уточнением в процессе рекогносцировки минимальное отстояние Ymin от базиса до ближнего плана и устанавливают возможности обработки ближнего плана на универсальных приборах;

рассчитывают длины базисов фотографирования с учетом намеченных величин максимальных отстояний Ymax, возможности графомеханической обработки и особенностей стереозрения;

определяют допустимость превышений между левой и правой точками базиса при обработке снимков на универсальных приборах;

определяют углы наклона оптической оси фотокамеры, пространственного положения базиса фотографирования при использовании общего случая съемки;

определяют возможности построения маршрута из серии базисов с разреженным обоснованием с целью аналитического сгущения или создания геодезического обоснования в камеральных условиях.

2.1.5. Базисы фотографирования целесообразно размещать:

перпендикулярно направлению ската, что позволяет выявить особенности рельефа фотографируемого участка и уменьшить площади «мертвых» зон;

нормально к направлению оврагов, с тем, чтобы обеспечить на снимках изображение тальвега;

на возвышенных местах, так как количество и площади «мертвых» пространств уменьшаются с увеличением относительной высоты стояния фотокамеры.

При расчете величины базиса и максимальных отстояний необходимо учитывать метод составления топографического плана. Применение графомеханического метода составления плана заданного масштаба возможно, если значения максимальных отстояний и базисов не будут превышать в масштабе плана величин, указанных в табл. 1.

Таблица 1

Название прибора

Ymax,

'>

Документ сокращен, так как он очень большой. Для просмотра полной версии этого документа пройдите по ссылке Бесплатный заказ нужного документа

 
< Пред.   След. >
Полезное: