Проектирование и строительство нормативно-методические документы arrow Автодороги arrow Инстpукция Инструкция по производству электроразведочных работ при изысканиях автомобильных дорог  
21.10.2018
    
Инстpукция Инструкция по производству электроразведочных работ при изысканиях автомобильных дорог

МИНИСТЕРСТВО ТРАНСПОРТНОГО СТРОИТЕЛЬСТВА СССР.
ГЛАВДОРСТРОЙ

ГОСУДАРСТВЕННЫЙ ПРОЕКТНЫЙ ИНСТИТУТ «СОЮЗДОРПРОЕКТ»

ТБИЛИССКИЙ ФИЛИАЛ

Утверждено

СОЮЗДОРПРОЕКТОМ

1 мая 1961 года

ИНСТРУКЦИЯ

ПО ПРОИЗВОДСТВУ ЭЛЕКТРОРАЗВЕДОЧНЫХ РАБОТ
ПРИ ИЗЫСКАНИЯХ АВТОМОБИЛЬНЫХ ДОРОГ

Тбилиси

1961 г.

Настоящая инструкция разработана Тбилисским филиалом Союздорпроекта и введена в действие с 1 мая 1961 г. приказом Союздорпроекта как пособие при изысканиях автомобильных дорог.

предисловие

Опыт электроразведочных работ в системе государственного проектного института «Союздорпроект» с 1955 г. показал, что применение электроразведки при решении инженерно-геологических задач на трассах проектируемых автомобильных дорог значительно сокращает стоимость изысканий и повышает, качество выпускаемого проекта.

На основе обобщения накопленного опыта составлена настоящая инструкция, которая содержит требования, предъявляемые к электроразведочным работам при изысканиях трасс автомобильных дорог и является руководящим документом для электроразведочных отрядов Союздорпроекта Главдорстроя Министерства транспортного строительства СССР.

«Инструкция по производству электроразведочных работ при изысканиях автомобильных дорог» составлена Тбилисским филиалом ГПИ «Союздорпроект» (автор инструкции - Л.С. Чантуришвили) и рекомендована Главтранспроектом Минтрансстроя СССР в качестве пособия для изыскателей и проектировщиков автомобильных дорог.

Инструкция введена в действие Союздорпроектом с 1 мая 1961 года.

ВВЕДЕНИЕ

В решении задач инженерной геологии, в частности, при изысканиях трасс проектируемых автомобильных дорог, находит широкое применение; электроразведка. С ее помощью и контрольных геолого-разведочных выработок могут определяться геологические разрезы для отдельных сооружений, устанавливаться мощность и границы оползней и карстовых зон. Электроразведка может применяться с целью поисков и разведки месторождений строительных материалов и т.д.

Надо полагать, что в дальнейшем при изысканиях трасс автомобильных дорог в отдельных случаях будут использованы также сейсмические, магнитные, радиометрические и другие геофизические методы разведки.

На данном же этапе, исходя из опыта работ по изысканиям и проектированию трасс автомобильных дорог, электроразведку следует рассматривать как неотъемлемую часть инженерно-геологических работ, т. к. электроразведка позволяет ускорить и улучшить исследования трасс автомобильных дорог. Электроразведка позволяет более правильно ориентировать бурение, сокращать число буровых скважин и шурфов, чем достигается сокращение сроков работ и уменьшается их стоимость.

Обязательным условием успешного применения электроразведки при изысканиях трасс автомобильных дорог является различие в удельных сопротивлениях горных пород, слагающих район работ.

Электроразведка может быть применена на всех стадиях дорожных изысканий и, особенно, на стадии рекогносцировочных работ. Она применяется также на стадии составления технико-экономического доклада, когда возникает надобность уточнения инженерно-геологических условий отдельных районов прокладки трассы дороги.

Настоящая инструкция построена по схеме, принятой в общесоюзной инструкции по электроразведке, изданной Министерством геологии и охраны недр СССР к 1952 г. (повторное издание инструкции находится в печати).

Инструкция представлена тремя главами:

В главе I «Организация работ» - дана структура геофизической службы и проектных организациях Союздорпроекта и указываются обязанности руководителя группы, начальника отряда, техника-вычислителя и топографа. В этой же главе указано необходимое оборудование для электроразведочного отряда, а также разъясняются некоторые организационные вопросы общего характера.

В главе II «Полевые работы» - излагаются требования по подготовке участка электроразведочных работ; приводятся сведения о методах электроразведки, применяемых при изысканиях трасс автомобильных дорог и, наконец, описываются требования и рекомендации по применению электроразведки при исследовании мостовых переходов, тоннельных ходов, оползней и обвалов, карстовых зон, при поисках и разведке подземных вод и месторождений строительных материалов.

В главе III «Камеральные работы» даются краткие рекомендации по интерпретации результатов полевых исследований и оформлению полевых материалов. В тех разделах инструкции, в которых излагаются вопросы, касающиеся укомплектования электроразведочных отрядов приборами, организации работ, точности замеров и т.д., приведены лишь основные сведения практического характера.

Для получения более подробных сведений служит инструкция Министерства геологии.

ГЛАВА I.

Организация работ

§ 1. Для выполнения электроразведочных работ в проектных институтах Союздорпроекта организуются электроразведочные отряды, объединяемые в отдельную электроразведочную группу.

§ 2. Число отрядов в группе определяется объемом проектно-изыскательских работ.

§ 3. Отряд состоит из начальника отряда и техника-вычислителя.

§ 4. Число рабочих в отряде определяется выбранной методикой и масштабом электроразведочных работ, согласно СУПСу и «Единым нормам выработки на геофизические работы».

§ 5. Топографические работы для электроразведочного отряда выполняются топографами, входящими в состав экспедиции по заявке начальника отряда.

Если же электроразведочные работы проводятся самостоятельно, то в состав отряда включается топограф, срок пребывания которого в отряде определяется объемом топографических работ.

Обязанности руководителя группы, начальника отряда, техника-вычислителя и топографа

§ 6. Руководитель электроразведочной группы является ответственным за работу отрядов. Он принимает участие в составлении производственного плана по электроразведочным работам и следит за графиком выполнения этого плана, принимает заявки на оборудование и приборы от начальников отрядов и следит за своевременным оснащением отрядов необходимым оборудованием, снаряжением и материалами, проверяет готовность отряда к полевым работам, представляет к списанию израсходованный материал или изношенное оборудование, в ходе полевых работ проверяет материал полевых наблюдений и принимает от начальников отрядов полевые книжки и прочий полевой материал, консультирует, по мере необходимости, начальников отрядов в период камеральных работ, следит за новейшей литературой по специальности и помогает членам группы в повышении квалификации.

§ 7. Начальник отряда отвечает за результаты выполняемых отрядом электроразведочных работ. Перед выездом он знакомится с необходимыми геологическими и геофизическими материалами по проектируемой трассе, составляет план работ, намечает методику исследования, укомплектовывает отряд необходимым оборудованием и снаряжением. Начальник отряда выбирает в поле участки для параметрических замеров удельных электрических сопротивлений горных пород, выбирает направления электрических профилей и местоположения точек вертикального электрического зондирования (ВЭЗ), выполняет полевые работы в соответствии с графиком выполнения производственного плана на объекте работ, следит за соблюдением правил техники безопасности*), обрабатывает полевой материал и составляет совместно с геологом отчет о проведенных работах. Отчет по инженерно-геологическим и электроразведочным работам составляет единое целое.

*) По «Памятке по технике безопасности для рабочих электроразведки», Госгеолиздат, 1957 г.

§ 8. Техник-вычислитель отвечает за правильность записей в полевом журнале, за правильность вычислений и за правильность составления графического материала, размечает провода в последовательности, указанной начальником отряда, руководит заготовкой колышков для закрепления точек наблюдения, заносит в книжку наблюдений значения измеряемых величин, вычисляет ρк - кажущееся удельное электрическое сопротивление и записывает замечания оператора, наносит абрис участка работ и записывает особенности условий заземления приемных электродов, следит за очередностью прохождения меток на проводах, отмечает сомнительные значения ρк для повторных замеров разности потенциалов и силы тока, подсчитывает погрешность замеров, строит графики кривых ρк, выполняет все указания начальника отряда по технике безопасности, принимает участие в камеральной обработке полевого материала.

§ 9. Топограф является ответственным за планово-высотную привязку электроразведочных точек и за разбивку сетки. Он обязан сдать начальнику отряда все необходимые топографические материалы до окончания полевого периода.

Оснащение отряда

§ 10. Электроразведочный отряд оснащается: двумя потенциометрами ЭП-1 или двумя приборами ЭСК-1, проводами, пригодными для полевых работ (ПСМ, ПСМО, ПТГ-19 и пр.), полевыми катушками, батареями Б-72 или аналогичными других марок, элементами*), соединительно-медными проводами, заземлениями стальными или железными и медными или латунными, зонтами топографическими, кувалдами и набором необходимых инструментов, изоляционной лентой (резиновой и хлопчатобумажной), полевыми журналами, бланками для построения кривых ВЭЗ, миллиметровкой и канцпринадлежностями, а также необходимым для полевой работы хозинвентарем (походные кровати, спальные мешки, кухонные принадлежности и пр.).

*) Количество проводов, батарей, полевых катушек, пикетов и т.д. определяются объемом работ.

§ 11. За сохранность оборудования, материалов и снаряжения полную ответственность несет начальник отряда.

§ 12. Электроразведочной группе как по месту нахождения проектной организации, так и в полевых условиях должно быть выделено помещение для работы, а также помещение для хранения снаряжения, оборудования и материалов.

§ 13. В случае отсутствия помещения на участках работ следует использовать палатки. По окончании работ палатки сдаются в общий склад, уложенные аккуратно, в чистом и сухом виде.

Транспортирование грузов и организационные вопросы общего характера

§ 14. Снаряжение электроразведочного отряда отсылается багажом на участок работ. Измерительный прибор - потенциометр - перевозит в вагоне начальник отряда. В багаж прибор сдавать нельзя во избежание порчи.

§ 15. Электроразведочный отряд обслуживается автомашиной на период полевых работ, если участок удален от базы более, чем на один километр. В особо трудных горных условиях предоставляется вьючный транспорт.

§ 10. Отряд базируется в ближайшем от участка работ населенном пункте.

§ 17. При комплексных изысканиях наем рабочих для электроразведочного отряда и для топографа, работающего при отряде, производится начальником экспедиции. Если же отряд выезжает в поле самостоятельно, рабочих нанимает начальник отряда.

В этом случае он обязан явиться в местные органы власти, информировать их о задачах, стоящих перед отрядом, а также установить связь с проектной организацией.

ГЛАВА II.

Полевые работы

§ 18. Электроразведка проводится после рекогносцировочного инженерно-геологического обследования района прокладки трассы проектируемой дороги, в процессе осуществления которого намечаются в общих чертах: трасса проектируемой дороги, мостовые переходы, тоннельные, ходы, глубокие выемки и пр. После предварительного осмотра в составе работ по инженерно-геологическому обследованию района определяется объем и характер электроразведочных работ.

Электроразведочный отряд выезжает на полевые работы в срок, установленный календарным графиком работ экспедиции.

§ 10. Полевые работы должны осуществляться по плану и программе, составленным руководителем группы совместно с начальником отряда.

Подготовка участка электроразведочных работ

§ 20. Начальник отряда совместно с топографом намечает направление профилей, их густоту и расстояние между точками наблюдения, после чего топограф приступает к работе по разбивке разведочной сетки.

§ 21. Точки наблюдения закрепляются на местности деревянными колышками. На колышках надписываются номер электропрофиля и порядковый номер колышка или номер ВЭЗ. Надписи обязательно делаются простым карандашом.

§ 22. Номер профиля обозначается римскими, а номер точки наблюдения - арабскими цифрами. Так, например, вторая точка второго профиля обозначается: II/2. Каждый добавочный профиль обозначается номером предшествующего, со штрихом. Так, например, между профилями I и II будет профиль с индексом I’.

Перед номером пишутся начальные буквы применяемого метода работ: ВЭЗ № ____ ЭП*) №_________, ППЗ**) №_________ и т.д.

*) ЭП - электропрофиль

**) ППЗ - пункт параметрического замера

§ 23. Колышки с обозначением номера ставятся на каждой точке вертикального электрического зондирования. При электропрофилировании и работах по методу естественного электрического поля колышки устанавливаются через десять точек замера при хорошей и через пять-при плохой видимости, а чаще - в зависимости от шага установки.

§ 24. В руслах рек участок электроразведочных работ подготавливается с помощью провешенных линий, на которых закреплены поплавки с флажками, отмечающие местоположение точки наблюдения. Каждому профилю соответствует определенный цвет флажка.

§ 25. Топографическая привязка точек ВЭЗ в руслах рек ведется одновременно с производством электроразведочных работ.

Общие сведения о методах электроразведки, применяемых при изысканиях трасс автомобильных дорог

§ 26. При исследовании геологического строения участка работ по глубине, применяется метод вертикального электрического зондирования (ВЭЗ).

При помощи этого метода определяется:

1. Мощность наносов по трассе;

2. Мощность отдельных литологически различных слоев;

3. Строение перевального участки для проектирования тоннельного хода дороги;

4. Глубина залегания под вскрышей и мощность стройматериалов;

5. Глубина залегания водоносных пород;

6. Мощность оползневого тела;

7. Мощность аллювия в руслах рек;

8. Угол погружения кровли коренных пород, слагающих склон под аллювиальными образованиями долины.

§ 27. Применяются разные виды ВЭЗ:

Симметричное ВЭЗ

Питающие (А, В) и приемные. (М, N) электроды располагаются по одной прямой линии симметрично относительно центра установки АМNВ.

Значение кажущегося удельного электрического сопротивления ρк рассчитывается по формуле:

 или

,

где: , ;

Dn - разность потенциалов между приемными электродами М и N - отсчитываемая в мв;

I - сила тока в цепи (батарея-прибор-земля-батарея), выраженная в ма.

При выполнении ВЭЗ рекомендуется в виде примера следующая последовательность разносов электродов AВ и МN (таблица 1).

Таблица 1

№№ замеров

MN

К

№№ замеров

MN

К

1

0,75

0,5

3,14

11

65

14

936

2

1,2

0,5

8,66

12

100

14

2230

3

1,8

0,5

1996

12*)

100

50

588

4

2,8

0,5

48,9

13

160

14

5730

5

4,5

0,5

129,8

14

240

50

3578

5*)

4,5

3

18,8

15

380

50

9030

6

6,8

0,5

286

16

570

50

20386

6*)

6,8

3

48

17

900

50

50820

7

11

3

124,3

 

 

 

 

8

17

3

300

 

 

 

 

9

26

3

798

 

 

 

 

9*)

26

14

140,6

 

 

 

 

10

40

3

1672

 

 

 

 

10*)

40

14

349

 

 

 

 

Выбор разносов электродов может решаться по усмотрению начальника отряда, но всегда следует обеспечить получение отчетливой левой ветви кривой. Необходимо при этом помнить, что величина отношения каждого последующего разноса к предыдущему должна быть в интервале 1,3 - 1,5. Тогда значения ρк равномерно распределятся по кривой ВЭЗ. Всегда должно соблюдаться условие:

 и AB не должно быть больше 30 МN.

Этот метод применяется в тех случаях, когда предполагается более или менее параллельное залегание слоев. Каждая кривая ВЭЗ должна иметь законченный вид.

Однополюсное ВЭЗ

Оно отличается от симметричного тем, что питающий электрод «В» отнесен в «бесконечность» и его влиянием на разность потенциалов между приемными электродами можно пренебречь. Если условия местности позволяют, электрод «В» надо относить перпендикулярно к трем остальным электродам от средней точки «О» на расстояние, равное 10-кратному максимальному разносу АО. Если же этой возможности нет, что чаще всего бывает при работе в сильно пересеченной местности, электрод «В» относится в любом удобном направлении на расстояние, равное 15-кратному разносу АОmax.

При однополюсном ВЭЗ рекомендуется последовательность разносов, принятая для симметричного ВЭЗ. Значения коэффициентов «К» при однополюсном зондировании вычисляется по формуле:

.

Условия применения однополюсного зондирования те же, что и симметричного ВЭЗ. Кроме того, этот метод дает лучшие результаты, когда необходимо определить мощность слоя, выклинивающегося на некотором расстоянии от точки зондирования или зондирование приходится проводить вблизи выхода контакта пород. В этих случаях однополюсное зондирование проводится в двух противоположных направлениях, если топографические условия не ограничивают возможности такого двухстороннего однополюсного зондирования (комбинированного зондирования). ВЭЗ производится в нескольких точках по профилю, при фиксированном положении электрода в «бесконечности».

Круговое ВЭЗ

Зондирование, проводимое в одной точке в разных азимутах называют круговым ВЭЗ. Значения ρк рассчитываются по формуле симметричного или однополюсного ВЭЗ, в зависимости от вида применяемого зондирования.

Круговое ВЭЗ применяется при изучении трещиноватости и при изучении карста.

Дипольное ВЭЗ

Отличается от обычного зондирования тем, что расстояние между питающими электродами, а также между приемными значительно меньше, чем расстояние между средними точками этих двух пар.

Дипольное ВЭЗ подразделяется на следующие виды: азимутальное, если ось диполя MN перпендикулярна линии ОО’, соединяющей центры диполей; перпендикулярное, если оси диполей АВ и MN взаимно перпендикулярны; радиальное, когда диполь MN расположен вдоль линии ОО’; параллельное - при расположении диполей АВ и МN параллельно друг другу; осевое, если ось диполя MN находится на продолжении оси диполя АВ; экваториальное - при расположении осей диполей АВ и МN параллельно друг другу и одновременно перпендикулярно к ОО (рис. 1).

Рис. 1. Схема дипольного ВЭЗ

а) дипольное азимутальное зондирование; б) дипольное перпендикулярное зондирование; в) дипольное радиальное зондирование; г) дипольное параллельное зондирование; д) дипольное осевое зондирование; е) дипольное экваториальное зондирование.

Из перечисленных наиболее простыми являются осевая и экваториальная установки.

Значения ρк для осевой установки рассчитываются по формуле:

;

для экваториальной:

,

где: l - длина питающего диполя, r - расстояние между центрами АВ и MN диполей.

Дипольное зондирование, в отличие от всех вышеназванных, является весьма чувствительным к неоднородности изучаемых горных пород; к изменению угла наклона плоскости контакта слоев. Применение-этого метода в дорожных изысканиях пока что весьма ограничено, несмотря на некоторые преимущества дипольного ВЭЗ перед другими видами зондирования.

§ 28. Результаты измерений Du, I и вычисленное ρк заносят в полевой журнал, форма которого дана в приложении № 1.

§ 29. Электропрофилирование применяется:

1. При установлении относительного положения кровли коренных пород под наносами, т.е. когда требуется установить участки, где мощность наносов больше по сравнению с другими участками.

2. При поисках месторождений строительных материалов и при оконтуривании в их пределах участков с наиболее благоприятными вскрышными условиями.

3. При выявлении и прослеживании крутопадающих контактов одних горных пород с другими, резко разнящихся между собой по удельным электрическим сопротивлениям

4. При выявлении и оконтуривании карстовых зон.

5. При выявлении и оконтуривании тектонических зон.

6. При выявлении и прослеживании древних долин.

7. При выявлении погребенных линз льда на пойменных моренах в районах мерзлоты.

8. При обследовании осыпей и обвалов (в благоприятных случаях) и при решении некоторых других задач.

Разносы электропрофильной установки выбираются по электрозондированиям, а иногда и по результатам проведенного опытного профилирования с различными разносами питающей линии.

§ 30. Различают следующие виды электропрофилирования:

1. Одинарное симметричное (АMNB).

2. Двойное симметричное электропрофилирование AAMN BB’.

3. Электропрофиль с повторением AAMОN BB’.

4. Электропрофиль АВ фиксированное. Заземления АВ строго фиксированы. Электроды MN перемещаются только по средней трети между разносами АВ.

Коэффициенты «К» рассчитывается по формуле:

*)

*) rAM, rAN и т.д. означают расстояния между электродами, отмеченными соответствующими буквами.

Коэффициенты «К» рассчитываются для  до середины расстояния АВ, так как во второй части  они повторяются. Этот профиль с успехом применяется для выделения неоднородных локальных зон, например карстовых зон, заполненных глинистым материалом.

5. Комбинированное профилирование.

Расположение электродов и расчеты значений ρк аналогичны изложенному для однополюсного ВЭЗ. Определение кажущегося сопротивления производится на встречных асимметричных установках АМN (прямая) и BNM (обратная). Электрод С относится в «бесконечность». Этот вид профилирования применяется для обнаружения мелких включений, для прослеживания контактов между двумя средами под четвертичными образованиями, для обнаружения местоположения и направления простирания маломощных пластов с пологими углами падения или для сравнительно мощных пластов, но с крутыми углами падения.

6. Дипольное профилирование.

Расположение электродов, а также расчетные формулы ρк аналогичны изложенному для дипольного ВЭЗ.

Меняя размеры приемной и питающей линий диполей, можно решать различные задачи. При изучении крупных структур, дающих плавные аномалии ρк, следует применять линии одинаковых размеров. При изучении резко локализованных объектов, например маломощных жил, применяется малая приемная линия при относительно большой питающей.

Кроме перечисленных видов профилирования, отдельно выделяют установки на двух, трех и т.д. глубинах и круговое профилирование.

Профилирование на нескольких глубинах не отличается принципиально от симметричного четырехполюсного профилирования и характеризуется разными расстояниями между питающими электродами; применяется при решении вышеперечисленных задач.

Профилирование называется круговым, когда электропрофили ориентированы радиально от одной точки, для которой и рассматриваются полученные результаты.

Круговое профилирование применяется для исследования анизотропности сред. Надо заметить, что для этой цели выгоднее применять круговое ВЭЗ.

§ 31. Данные электропрофилирования заносят в полевой журнал (см. приложения № 2, № 3, № 4).

§ 32. Удельное электрическое сопротивление искажается в сторону снижения, когда глубина заземления питающих электродов становится соизмеримой с расстоянием между электродами А и В. Поэтому в тех случаях, когда оказывается необходимым глубоко забивать питающие электроды (в сыпучих грунтах, в районах мерзлоты, в аллювиальных сухих песках и т.д.), на малых расстояниях, расчет ρк надо производить по формуле:

где: l - удвоенная глубина заземления.

Если АВ = 10l, то глубиной погружения можно пренебречь.

Значения ρк не зависят от глубины заземления приемных электродов.

§ 33. Значения ρк, полученные при электрозондировании (ВЭЗ) и электропрофилировании, приписываются средней точке расстояния между приемными электродами - центру установки.

§ 34. Для грубоориентировочных вычислений значений ρк при производстве работ методом АВ фиксированное. Полевые наблюдения проводятся следующим образом: пусть l - отрезок, взятый в средней трети питающей линии АВ. Приемные электроды разносятся на концы отрезка l и рассчитываются значения ρк по формуле: . Среднее значение разности потенциалов на шаг измерения , где n - проектируемое число шагов в интервале l. Приближением одного из приемных электродов к другому определяется величина разности потенциалов на шаг измерения: Dui, = , где  и  соответственно разности потенциалов между неподвижным электродом измерительной линии и i-м и (i-1)-м положениями приближающегося электрода.

Значение ρк рассчитывается по формуле:

Простота способа очевидна, тем более, что по ходу работ оператор может менять шаг наблюдения по собственному усмотрению, легко пересчитывая значения .

При данном способе работ требуется строгий контроль за постоянством силы тока в питающей линии.

§ 35. Для определения угла ap, образованного дневной поверхностью аллювиальных образований и кровлей коренных пород в долине реки, предлагается т. н. полуэкспериментальный прием наблюдений (рис. 2).

Рис. 2. Иллюстрация к полуэкспериментальному приёму определения угла наклона (ap)

Питающий электрод А заземляется в подошве склона. На поперечнике, проведенном через точку А, выбираются две точки: одна - по склону, вторая - в пойме на расстоянии соответственно r1, r2 от А (для удобства работы r2 < r1). Электрод В относится вдоль поймы на расстояние 15 r1. Начало цилиндрических координат находится в точке А. Ось направлена по подошве склона, в сторону электрода В.

В точках r1, и r2, производятся измерения градиента потенциала по направлениям r и z. Получается пара значений градиентов в двух точках: . Перемещением приемных электродов на шаг и повторением измерений по r и z (на рисунке MN и MN’) находится вторая пара значений:

Разность градиентов по r и z дает приращение градиента потенциала: Искомый угол a вычисляется по формуле:

где: (2 - Р) p - угол у подошвы склона - измеряется горным компасом:

ρ2 - удельное электрическое сопротивление коренных пород, ρ1 - аллювиальных образований, которые определяются из данных ВЭЗ вдали от подошвы склона.

§ 36. Измерение естественного электрического поля в земле (ПС) электрофильтрационного и диффузионно-адсорбционного происхождения применяется при инженерно-геологических изысканиях трасс автомобильных дорог с целью обнаружения и прослеживания грунтовых вод. Этот метод используется для изучения проблемы водоснабжения населенных пунктов при строительстве и эксплуатации автомобильных дорог, для исследования утечки воды из водоемов и т.д.

Метод ПС подразделяется на два вида работ:

1. Измерения потенциала естественного поля;

2. Регистрация разностей потенциала или т. н. измерения градиента поля ПС. Предпочтение отдается в основном первому виду работ. Градиент потенциала измеряется лишь в тех случаях, когда измерение потенциала затруднено из-за блуждающих (или теллурических) токов, а также при маршрутных съемках.

При измерении потенциала один электрод фиксирован, а второй перемещается по профилю.

При регистрации разности потенциалов измерения ведутся при взаимной перестановке электродов. Электрофильтрационные и диффузионно-адсорбционные поля обычно весьма малы по величине, и поэтому требуется тщательный контроль собственной ЭДС неполяризующихся электродов. Недоучет ЭДС электродов может привести к ложным аномалиям поля ПС.

§ 37. Данные метода ПС заносятся в полевой журнал (приложения №№ 5, 6).

§ 38. Метод заряженного тела применяется при изысканиях трасс автомобильных дорог и основном для прослеживания направления и определения скорости движения подземных вод и, в редких исключениях, для картирования зон трещиноватости и зон разломов, если они заполнены хорошо проводящей электрический ток средой.

Для применения данного метода необходимо, чтобы проводимость заряжаемой среды была значительно больше проводимости вмещающих пород.

Поэтому в скважину, вскрывшую подземные воды, загружается поваренная соль или хлористый аммоний. Один из питающих электродов опускается в скважину вместе с солью, а второй заземляется на расстоянии, превышающем глубину погружения первого электрода в скважину в 10 - 15 раз.

Соль растворяется и выносится в направлении движения потока. Ореол растворенной соли является хорошим проводником электрического тока, поэтому смещение ореола отражается на форме эквипотенциальных линий на дневной поверхности.

По скорости вытягивания эквипотенциальных линий определяется скорость, а также направление движения грунтовых вод, поскольку передний край ореола перемещается со скоростью, близкой к скорости движения потока.

Скорость потока (vn) рассчитывается по скорости смещения центра замкнутой эквипотенциальной линии (vц) по формуле:

где: s1 - s2 - величина смещения центров двух последовательно наблюденных изолиний; t1 - t2 - время.

§ 39. Данные метода заряженного тела заносятся и полевой журнал (приложение № 7).

§ 40. При проведении электроразведочных работ в условиях пересеченной местности электрическое поле искажается за счет рельефа: выпуклые формы рельефа понижают, а вогнутые - повышают нормальное значение ρк. Для количественного учета влияния рельефа предлагаются палетки Е (рисунки 3, 4). По оси ординат отложены значения - где ρ0 - неискаженное рельефом значение удельного сопротивления; по оси абсцисс - расстояния вдоль дневной поверхности.

Рис. 3. Палетки Е для долин (а) и хребтов (б) с поперечным сечением формы симметричного треугольника.

Рис. 4. Палетки Е для долин и хребтов с поперечным сечением формы асимметричного треугольника.

Палетки Е пригодны для интерпретации кривых ρк комбинированного профилирования, когда АО >> МN, а также профилирования симметричной установкой, когда АВ >> МN. Ими легко пользоваться. Для этого надо топографический разрез вдоль профиля совместить с подходящим треугольником. Если экспериментальная кривая электропрофилирования следует ходу соответствующей теоретической, аномалия обусловлена влиянием рельефа и полностью исключается; если же она отклоняется от хода теоретической кривой, то аномалия, помимо влияния рельефа, обусловлена какими-то посторонними причинами, которые должны быть объяснены геологическим строением в данной точке.

Пример. На рис. 5 представлены кривые ρк вдоль четырех профилей, пересекающих овраги. Нанесены соответствующие кривые Е и топографические разрезы вдоль профилей. За ось абсцисс, на которую асимптотически выходят ветви палетки Е, принята прямая, отсекающая на оси ординат значение ρк - 125 омм. Это значение представляет собой среднее кажущееся сопротивление пород в той части участка, где кривая не искажена оврагом. Выбор асимптотического значения Е, следовательно, обуславливается видом кривой в ее неискаженной части. Выбор значения L также несколько условный. Нельзя утверждать, что овраг начинается на концах отрезка L, так же как нельзя ожидать, что борт оврага будет сохранять неизменный угол наклона. Однако такой приближенный метод подбора треугольника и соответствующей кривой палетки Е, как показывает практика полевых работ, дает достаточно хорошие результаты при интерпретации кривых электропрофилирования.

Рис. 5. Пример применения палетки Е.

Палетки Е не рассчитаны для угловых точек контура, в частности для дна долины. В этом случае, следуя теории, получаем значение ρк = ∞. Практически же любой угол скруглен в разной степени*). Для определения значения ρк в точке, расположенной на дне долины, необходимо дополнить контур долины до треугольника, измерить расстояние от вершины треугольника до точки касания с контуром долины, определить величину превышения дна долины над вершиной треугольника и значения ρк рассчитать по таблице значений поправочных коэффициентов.

*) М.Л. Лаврентьев и Б.В. Шабат. Методы теории функций комплексного переменного, стр. 180. Гос. изд. физ.-мат. литературы, М., 1958 г.

ТАБЛИЦА значений поправочных коэффициентов

Расстояние от вершины треугольника до точки касания вписанного контура долины (в долях длины борта)

1/5

'>

Документ сокращен, так как он очень большой. Для просмотра полной версии этого документа пройдите по ссылке Бесплатный заказ нужного документа

 
< Пред.   След. >
Полезное: