Проектирование и строительство нормативно-методические документы arrow Объекты нефтяной и газовой промышленности arrow МЕТОДИКА ОПРЕДЕЛЕНИЯ ГРАНИЦ УСТОЙЧИВОСТИ И ВЫБОРА ПАРАМЕТРОВ ЗАЩИТ УЗЛОВЭЛЕКТРИЧЕСКОЙ НАГРУЗКИ СИСТЕ  
21.07.2018
    
МЕТОДИКА ОПРЕДЕЛЕНИЯ ГРАНИЦ УСТОЙЧИВОСТИ И ВЫБОРА ПАРАМЕТРОВ ЗАЩИТ УЗЛОВЭЛЕКТРИЧЕСКОЙ НАГРУЗКИ СИСТЕ

Российский государственный университет нефти и газа им. И.М. Губкина

Управление энергетики ОАО «Газпром»

МЕТОДИКА ОПРЕДЕЛЕНИЯ ГРАНИЦ УСТОЙЧИВОСТИ И ВЫБОРА ПАРАМЕТРОВ ЗАЩИТ УЗЛОВ ЭЛЕКТРИЧЕСКОЙ НАГРУЗКИ СИСТЕМ ЭЛЕКТРОСНАБЖЕНИЯ ГАЗОПЕРЕРАБАТЫВАЮЩИХ ЗАВОДОВ

Москва 1998 г.

УТВЕРЖДАЮ

Заместитель Председателя правления

РАО “Газпром”

В.В.Ремизов

13.04.1998г.

Методика
определения границ устойчивости и выбора параметров защит узлов электрической нагрузки систем электроснабжения газоперерабатывающих заводов

(1-я редакция)

СОГЛАСОВАНО

СОГЛАСОВАНО

Начальник Управления

Начальник управления

Научно-технического прогресса

Главного энергетика

и экологии РАО "Газпром"

РАО "Газпром"

А.Д. Седых

Г.Р.Шварц

Москва-1998

УТВЕРЖДАЮ

Проректор по научной работе

ГАНГ им. И.М.Губкина

И.Н.Стрижов

25.12.1997г.

Методика

определения границ устойчивости и выбора параметров защит узлов электрической нагрузки систем электроснабжения газоперерабатывающих заводов

(1-я редакция)

Научный руководитель темы,

Ответственный исполнитель,

докт.технич.наук, профессор

докт.технич.наук, профессор

Б.Г.Меньшов

М.С.Ершов

Москва-1997

 TOC o "1-3" p " " h z ВВЕДЕНИЕ

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. НАЗНАЧЕНИЕ И ОБЛАСТЬ ДЕЙСТВИЯ ДОКУМЕНТА

1.2. ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ

1.3. ТЕОРЕТИЧЕСКИЕ ПОЛОЖЕНИЯ

2. ИСХОДНЫЕ ДАННЫЕ, СРЕДСТВА И ПРОЦЕДУРЫ РАСЧЕТА ГРАНИЦ УСТОЙЧИВОСТИ

2.1. ИСХОДНЫЕ ДАННЫЕ ДЛЯ РАСЧЕТА

2.2. РЕКОМЕНДУЕМЫЕ ПРОГРАММНЫЕ СРЕДСТВА

2.3. ПРОЦЕДУРЫ РАСЧЕТА ГРАНИЦ УСТОЙЧИВОСТИ

2.3.1. ОБЩИЕ ПОЛОЖЕНИЯ

2.3.2. РАСЧЕТ ГРАНИЦЫ СТАТИЧЕСКОЙ УСТОЙЧИВОСТИ ПРИ СИММЕТРИЧНЫХ ВНЕШНИХ ВОЗМУЩЕНИЯХ

2.3.3. РАСЧЕТ ГРАНИЦЫ СТАТИЧЕСКОЙ УСТОЙЧИВОСТИ ПРИ НЕСИММЕТРИЧНЫХ ВНЕШНИХ ВОЗМУЩЕНИЯХ

2.3.4. РАСЧЕТ ГРАНИЦЫ ДИНАМИЧЕСКОЙ УСТОЙЧИВОСТИ ПРИ СИММЕТРИЧНЫХ ВНЕШНИХ ВОЗМУЩЕНИЯХ

2.3.5. РАСЧЕТ ГРАНИЦЫ ДИНАМИЧЕСКОЙ УСТОЙЧИВОСТИ ПРИ НЕСИММЕТРИЧНЫХ ВНЕШНИХ ВОЗМУЩЕНИЯХ

2.3.6. РАСЧЕТ ГРАНИЦЫ ДИНАМИЧЕСКОЙ УСТОЙЧИВОСТИ ПРИ СИММЕТРИЧНЫХ ВНУТРЕННИХ ВОЗМУЩЕНИЯХ

3. ИСПОЛЬЗОВАНИЕ РЕЗУЛЬТАТОВ РАСЧЕТОВ УСТОЙЧИВОСТИ УЗЛОВ ЭЛЕКТРИЧЕСКОЙ НАГРУЗКИ

3.1. ИСПОЛЬЗОВАНИЕ ПАРАМЕТРОВ ГРАНИЦЫ УСТОЙЧИВОСТИ ПРИ СИММЕТРИЧНЫХ ВНЕШНИХ ВОЗМУЩЕНИЯХ

3.2. ИСПОЛЬЗОВАНИЕ ПАРАМЕТРОВ ГРАНИЦЫ УСТОЙЧИВОСТИ ПРИ СИММЕТРИЧНЫХ ВНУТРЕННИХ ВОЗМУЩЕНИЯХ

3.3. ИСПОЛЬЗОВАНИЕ ПАРАМЕТРОВ ГРАНИЦЫ УСТОЙЧИВОСТИ ПРИ НЕСИММЕТРИЧНЫХ ВНЕШНИХ ВОЗМУЩЕНИЯХ

4. ЛИТЕРАТУРА

ПРИЛОЖЕНИЕ № 1

РАСЧЕТ ГРАНИЦЫ СТАТИЧЕСКОЙ УСТОЙЧИВОСТИ ПРИ СИММЕТРИЧНЫХ ВНЕШНИХ ВОЗМУЩЕНИЯХ

ПРИЛОЖЕНИЕ №2

РАСЧЕТ ГРАНИЦЫ СТАТИЧЕСКОЙ УСТОЙЧИВОСТИ ПРИ НЕСИММЕТРИЧНЫХ ВНЕШНИХ ВОЗМУЩЕНИЯХ

ИНСТРУКЦИЯ по работе с программным комплексом SAD, предназначенным для расчета электромеханических переходных процессов в системах внутреннего электроснабжения промышленных предприятий с двигательной нагрузкой

ВВЕДЕНИЕ

1. СОСТАВ КОМПЛЕКСА

2. НАЗНАЧЕНИЕ КОМПЛЕКСА

3. РАБОТА С РАСЧЕТНЫМИ ПРОГРАММАМИ (ELEC, ELEN, ELET, ELETP)

3.1. НЕОБХОДИМЫЕ ИСХОДНЫЕ ДАННЫЕ

3.2. ЗАДАНИЕ УПРАВЛЯЮЩИХ ПАРАМЕТРОВ

3.3. УПРАВЛЕНИЕ В ХОДЕ РАСЧЕТОВ

3.4. ОКОНЧАНИЕ РАБОТЫ С РАСЧЕТНОЙ ПРОГРАММОЙ

4. РАБОТА С ПРОГРАММОЙ-РЕДАКТОРОМ (ELER)

4.1. ИСХОДНЫЕ ДАННЫЕ ДЛЯ ПОДГОТОВКИ ФАЙЛОВ

4.2. РЕЖИМЫ РАБОТЫ РЕДАКТОРА

4.3. РЕЖИМ СОЗДАНИЯ НОВОГО ФАЙЛА ДАННЫХ

4.4. РЕЖИМ ПРОСМОТРА ФАЙЛА ДАННЫХ

4.5. РЕЖИМ РЕДАКТИРОВАНИЯ

ВВЕДЕНИЕ

Настоящая методика предназначена для определения границ устойчивости узлов электрической нагрузки систем электроснабжения газоперерабатывающих заводов, оценки уровня устойчивости и ее учета при выборе параметров защит узлов электрической нагрузки с целью сокращения числа вынужденных отключений электропотребителей при аварийных возмущениях в системе электроснабжения предприятия.

Нормативной базой методики являются общепромышленные и отраслевые стандарты, правила, руководящие документы, в том числе: ГОСТ 21027-75. Системы энергетические. Термины и определения; Правила устройства электроустановок; Руководящие указания по устойчивости энергосистем; РТМ по проектированию электрической части газоперерабатывающих заводов. Методика уточняет и конкретизирует применительно к узлам промышленной электрической нагрузки положения существующих нормативных документов в части определения и оценки уровня устойчивости, ее учета для рационального управления электропотребителями в условиях аварийных возмущений в системе электроснабжения. Методика разработана в соответствии с рядом решений и постановлений по проблемам отраслевой электроэнергетики, в том числе: Решение по ТЭК №158 от 15.03.89 "Рекомендации по повышению надежности электроснабжения Астраханского ГПЗ, по созданию надежных схем электроснабжения крупных газонефтехимических предприятий"; Постановление №39-4/5346 от 09.07.87 "Разработать и внедрить мероприятия по повышению надежности и бесперебойности работы электроприводов компрессорных станций и предприятий по переработке газа и конденсата".

При разработке методики учтен практический опыт авторов по исследованию устойчивости узлов промышленной электрической нагрузки и решению вопросов снижения числа вынужденных отключений электропотребителей при возмущениях в системах электроснабжения газоперерабатывающих заводов, опыт разработки и эксплуатации необходимых программных средств. Методика прошла экспертизу эксплуатационных, проектных и научно-исследовательских организаций: ДП "Астраханьгазпром", АО "Оргэнергогаз-СПб", ДАО "ВНИПИгаздобыча", ВНИИГАЗ, ОАО "Институт ЮЖНИИГИПРОГАЗ".

В разработке методики принимали участие:

Государственная академия нефти и газа им. И.М. Губкина,

доктор техн. наук Меньшов Б.Г.

доктор техн. наук Ершов М.С.

кандидат техн. наук Егоров А.В. инж. Яценко Д.Е.

РАО "Газпром"

инж. Савенко Н.И.

инж. Корнеев А.А.

кандидат техн. наук Шварц Г.Р.

доктор техн. наук Белоусенко П.В.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. НАЗНАЧЕНИЕ И ОБЛАСТЬ ДЕЙСТВИЯ ДОКУМЕНТА

1.1.1. Методика предназначена для расчетного определения параметров, характеризующих границы устойчивости узлов электрической нагрузки систем электроснабжения газоперерабатывающих заводов, оценки уровня устойчивости и ее учета при выборе параметров защит узлов электрической нагрузки с целью сокращения числа вынужденных массовых отключений электропотребителей при аварийных возмущениях в системе внешнего и внутреннего электроснабжения предприятия.

1.1.2. Методика является рекомендуемым документом для оценки устойчивости узлов электрической нагрузки систем электроснабжения газоперерабатывающих заводов РАО "Газпром". Рекомендуется к использованию для обязательной оценки устойчивости основных узлов электрической нагрузки (пп.2.3.2, 2.3.4, 3.1) при проектировании систем электроснабжения газоперерабатывающих заводов. Для действующих газоперерабатывающих заводов рекомендуется к использованию при наличии и необходимости решения проблемы частых отключений узлов электрической нагрузки, обусловленных возмущениями в системе электроснабжения завода.

1.1.3. Методика основывается на расчетных методах определения границ устойчивости узлов электрической нагрузки и включает процедуру выполнения расчетов и рекомендации по применению программных средств. Наряду с рекомендуемым программным комплексом возможно применение других апробированных программ расчета переходных процессов в системах электроснабжения, учитывающих электромеханические переходные процессы электродвигательной нагрузки, и позволяющих реализовать процедуры определения границ устойчивости.

1.1.4. Расчетные методы связаны с известными ограничениями и допущениями, обусловленными выбором средств расчета и выбором режимов рассматриваемой системы. Рекомендуемый программный комплекс ориентирован на системы электроснабжения газоперерабатывающих заводов, для которых характерно применение в качестве основных источников питания узлов электроэнергетической системы, а так же разомкнутая структура электрических сетей предприятия. При нарушении указанных ограничений, например, для систем внутреннего электроснабжения с замкнутой кольцевой структурой, рекомендуется использовать другие программные средства, отвечающие условиям п. 1.1.3. Границы устойчивости узлов нагрузки могут быть рассчитаны исходя из различных допущений относительно режимов источников и состава потребителей электроэнергии. При оценке устойчивости узла электрической нагрузки целесообразно исходить из принципа "худшего случая" - минимального режима питающей энергосистемы и максимально возможного состава электрической нагрузки узла. При выборе уставок защиты минимального напряжения целесообразно исходить из наиболее представительных режимов питающей энергосистемы и узла.

1.2. ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ

1.2.1. Под узлом электрической нагрузки системы электроснабжения предприятия понимается секция шин распределительного устройства (пункта). Под основными узлами электрической нагрузки понимаются секции шин распределительного устройства главной понизительной подстанции предприятия.

1.2.2. Устойчивость узла электрической нагрузки - способность возвращаться к исходному установившемуся режиму после различного рода возмущений. Областью устойчивости называется зона значений параметров режима узла электрической нагрузки, в которой устойчивость его при данном возмущении обеспечена. Различается статическая и динамическая устойчивость узла электрической нагрузки.

1.2.3. Статическая устойчивость узла электрической нагрузки - способность возвращаться к исходному установившемуся режиму после малых неограниченных по времени возмущений. Под малым возмущением понимается такое, при котором изменения параметров несоизмеримо малы по сравнению со значениями этих параметров.

1.2.4. В области статической устойчивости в процессе малого неограниченного по длительности возмущения узел электрической нагрузки выходит на новый установившийся рабочий режим. При нарушении статической устойчивости в узлах электрической нагрузки системы электроснабжения возникает явление лавинообразного снижения напряжения.

1.2.5. Динамическая устойчивость узла электрической нагрузки - способность возвращаться к исходному установившемуся режиму после больших возмущений определенной величины и длительности.

1.2.6. Граница устойчивости узла электрической нагрузки - значение параметра или функциональная зависимость ряда параметров, разделяющая область возможных значений параметров узла на области устойчивости и неустойчивости.

1.2.7. Граница статической устойчивости разделяет область параметров на области статической устойчивости и неустойчивости при неограниченной длительности возмущающего воздействия в узле электрической нагрузки.

1.2.8. Граница динамической устойчивости разделяет область параметров на области динамической устойчивости и неустойчивости в зависимости от длительности возмущающего воздействия в узле электрической нагрузки.

1.2.9. Граница динамической устойчивости выражается зависимостью максимально допустимого времени возмущения от величины характеризующих возмущение параметров (параметра). Граница статической устойчивости является асимптотой границы динамической устойчивости.

1.3. ТЕОРЕТИЧЕСКИЕ ПОЛОЖЕНИЯ

1.3.1. Возмущения во внешней или внутренней части системы электроснабжения проявляются в виде провалов напряжения определенной глубины и длительности. При симметричных аварийных возмущениях в электрических сетях остаточное напряжение узла характеризуется действующим значением. При несимметричных аварийных возмущениях остаточное напряжение характеризуется действующими значениями симметричных составляющих, устойчивость узла зависит от значений прямой u1 и обратной u2 составляющих напряжения. Для узлов электрической нагрузки напряжение является первичным параметром определяющим режим узла, поэтому границы устойчивости определяются в координатах напряжения или его составляющих.

1.3.2. Граница статической устойчивости узла электрической нагрузки при симметричных возмущениях определяется одним параметром - значением напряжения статической устойчивости uсу, измеряемом в относительных единицах (о.е.).

1.3.3. Граница динамической устойчивости узла электрической нагрузки при симметричных возмущениях определяется как зависимость t(u) - максимально допустимого времени t (с) возмущения от величины остаточного напряжения u (о.е.). Зависимость t(u) может быть выражена с помощью трехпараметрической или двухпараметрической формулы, аппроксимирующей результаты расчетов устойчивости узла.

Трехпараметрическая формула имеет вид

t = a1 + a2/(а3-u),                                                                                (1)

где a1, a2, а3 -коэффициенты, определяемые расчетным путем, при этом а3= ucу.

Двухпараметрическая формула имеет вид

t = d1 (1 - u) / (1 - u / d2),                                                                   (2)

где d1 , d2 - коэффициенты, определяемые расчетным путем, при этом d1 = to, d2 = ucy.

Величина to определяется как максимально допустимое время возмущения не вызывающего нарушения динамической устойчивости узла электрической нагрузки при остаточном напряжении узла равном нулю, то есть to = t(u=0) . Точность формулы (2) ниже точности формулы (1) в пределах ± 5 %. Преимущество формулы (2) заключается в том, что все ее параметры имеют физический смысл, определение границы по формуле (2) сокращает объем расчетов.

1.3.4. Область статической устойчивости узла электрической нагрузки при симметричных возмущениях определяется условием u > uсу. Область динамической устойчивости узла электрической нагрузки при симметричных возмущениях определяется условием T(u) < t(u), означающем, что при данном значении остаточного напряжения u (при этом u < uсу) длительность Т произошедшего возмущения не превышает допустимого времени t, определяемого границей динамической устойчивости данного узла. Неравенство u < ucy означает, что динамическая устойчивость может нарушаться только в том случае, если остаточное напряжение при том или ином рассматриваемом возмущении ниже значения, определяемого границей статической устойчивости, в противном случае динамическая устойчивость заведомо сохраняется.

1.3.5. Граница статической устойчивости узла электрической нагрузки при несимметричных возмущениях определяется в координатах прямой u1 (o.e.) и обратной u2 (о.е.) последовательностей напряжения трехпараметрической функциональной зависимостью, аппроксимирующей результаты расчетов устойчивости узла

G(ul,u2) = b1 – u1 + b2 u2 + bз (u2)2 = 0,                                              (3)

где b1, b2, b3 -коэффициенты, определяемые расчетным путем, при этом b1 = uсу.

1.3.6. Граница динамической устойчивости узла электрической нагрузки при несимметричных возмущениях определяется как зависимость максимально допустимого времени t (с) возмущения от величины остаточного напряжения, в координатах прямой u1 (o.e.) и обратной u2 (o.e.) последовательностей. Зависимость t(u1,u2) может быть выражена с помощью пятипараметрической формулы, аппроксимирующей результаты расчетов устойчивости узла

t = a1 + a2/G,                                                                                       (4)

где a1, a2 -коэффициенты по п.1.3.3,формула (1); G -функция по п.1.3.5, формула (3).

1.3.7. Область статической устойчивости узла электрической нагрузки при несимметричных возмущениях определяется условием G < 0 . Область динамической устойчивости узла электрической нагрузки при несимметричных возмущениях определяется условием T(u1,u2) < t(u1,u2), где T(u1,u2) - длительность рассматриваемого возмущения с данными значениями u1 и u2 остаточного напряжения, при этом имеет смысл рассматривать динамическую устойчивость если G > 0. В противном случае динамическая устойчивость заведомо сохраняется.

2. ИСХОДНЫЕ ДАННЫЕ, СРЕДСТВА И ПРОЦЕДУРЫ РАСЧЕТА ГРАНИЦ УСТОЙЧИВОСТИ

2.1. ИСХОДНЫЕ ДАННЫЕ ДЛЯ РАСЧЕТА

2.1.1. Расчет границ устойчивости узлов электрической нагрузки производится на основании данных по питающей энергосистеме, системе электроснабжения, электроприводам и прочей электрической нагрузке предприятия. Рекомендации по выбору режимов питающей системы и узла нагрузки определены п. 1.1.4.

2.1.2. Данные по питающей электроэнергетической системе предоставляются соответствующими подразделениями энергосистемы и включают значения сопротивлений в максимальном и минимальном режимах энергосистемы до основных узлов (шин распределительных устройств ГПП) системы электроснабжения предприятия.

2.1.3. Данные по системе электроснабжения предприятия включают схему электрических сетей предприятия для нормального рабочего режима, сведения по линиям электропередачи, номенклатуре установленного оборудования (включая установки компенсации реактивной мощности) необходимые для составления схемы замещения системы электроснабжения.

2.1.4. Данные по электроприводам включают сведения по номенклатуре установленных электродвигателей (тип, номинальное напряжение, номинальная мощность, синхронная частота вращения) и соответствующих рабочих механизмов (тип механической характеристики - показатель степени зависимости момента механизма от частоты вращения, номинальный момент, начальный момент (в долях от номинального), общий момент инерции привода, приведенный к валу двигателя). Данные по прочей электрической нагрузке для каждого узла схемы включают сведения по характеру нагрузки, номинальному напряжению и мощности.

2.1.5. При формировании данных по электрической нагрузке эквивалентирование электродвигательной нагрузки должно быть сведено к минимуму. При невозможности детального информационного обеспечения допускается эквивалентирование по узлам схемы электродвигательной нагрузки на напряжение ниже 1000 В. Электродвигательная нагрузка на напряжение выше 1000 В не должна эквивалентироваться.

2.2. РЕКОМЕНДУЕМЫЕ ПРОГРАММНЫЕ СРЕДСТВА

2.2.1. Для расчета границ устойчивости узлов электрической нагрузки систем электроснабжения газоперерабатывающих заводов рекомендуется использовать программный комплекс SAD, разработанный в ГАНГ им. И.М. Губкина. Данный комплекс включает ряд программ. Основными программами, используемыми при расчетах устойчивости, являются:

ELEC - программа расчета установившихся режимов и переходных процессов при симметричных внешних и внутренних возмущениях;

ELEN - программа расчета переходных процессов при внешних несимметричных возмущениях, с определением электрических величин (токов в ветвях и напряжений в узлах) в координатах симметричных составляющих;

ELER - программа редактор для создания на основании исходных данных файлов по системе электроснабжения, электродвигателям и рабочим механизмам электроприводов.

GUS, GUN - программы для определения коэффициентов функциональных выражений границ устойчивости, аппроксимирующих результаты расчетов устойчивости.

2.2.2. Требования к аппаратному обеспечению: IBM-совместимый компьютер версии 286 и выше; не менее 2 Мб свободного пространства на жестком диске; не менее 500 Кб свободной оперативной памяти; операционная система DOS или WINDOWS.

2.2.3. Подробная информация о программном комплексе SAD и работе с ним излагается в инструкции пользователя, прилагаемой к данной методике.

2.2.4. Рекомендуемый программный комплекс SAD ориентирован на системы электроснабжения газоперерабатывающих заводов, питающиеся от электроэнергетической системы и имеющие разомкнутую или сводимую к разомкнутой на стадии подготовки исходных данных структуру электрических сетей (см. п. 1.1.4).

2.2.5. Наряду с рекомендуемым возможно применение других апробированных программных средств расчета переходных процессов в системах электроснабжения, учитывающих электромеханические переходные процессы электродвигательной нагрузки, не требующих значительного эквивалентирования нагрузки (см. п. 2.1.5) и позволяющих реализовать процедуры определения границ устойчивости.

2.3. ПРОЦЕДУРЫ РАСЧЕТА ГРАНИЦ УСТОЙЧИВОСТИ

2.3.1. ОБЩИЕ ПОЛОЖЕНИЯ

2.3.1.1. Границы устойчивости узлов электрической нагрузки могут быть определены в зависимости от места (внешние и внутренние) и вида (симметричные и несимметричные) возмущений. Для наиболее тяжелых по последствиям внешних возмущений предусмотрены процедуры определения границ статической и динамической устойчивости для симметричных и несимметричных видов возмущений. Для внутренних возмущений предусмотрена процедура определения максимально допустимого (предельного) времени симметричного возмущения в виде трехфазного короткого замыкания в любом из заданных узлов, при котором сохраняется устойчивость системы электроснабжения предприятия.

2.3.1.2. Для определения границ устойчивости используются: при симметричных возмущениях - программа ELEC, для несимметричных - ELEN, файлы исходных данных по системе электроснабжения, по электродвигателям, по механизмам электроприводов, а также программы GUS и GAN обработки результатов счета.

2.3.1.3. Все процедуры основываются на итерационных приемах подбора параметров в области возможных значений, определяющих границы устойчивости в соответствии с признаками статической или динамической устойчивости, которые изложены в разделе основных определений (п. 1.2) методики.

2.3.1.4. В начале расчетов подбирается номинальное значение ЭДС питающей электроэнергетической системы. Номинальное значение ЭДС подбирается исходя из того, чтобы значения напряжений в узлах расчетной схемы в установившемся исходном рабочем режиме не выходили из пределов 1,0 - 1,15 о.е. Фиксируются параметры установившегося режима рассматриваемого узла при номинальной ЭДС питающей энергосистемы.

2.3.1.5. При определении границ устойчивости узлов электрической нагрузки рекомендуется придерживаться следующих показателей точности: для ориентировочных расчетов 0,01 о.е. по напряжению и 0,05 с по времени; для точных расчетов 0,002 по напряжению и 0,01 с по времени.

2.3.2. РАСЧЕТ ГРАНИЦЫ СТАТИЧЕСКОЙ УСТОЙЧИВОСТИ ПРИ СИММЕТРИЧНЫХ ВНЕШНИХ ВОЗМУЩЕНИЯХ

2.3.2.1. Запускается программа ELEC, расчет начинается при заданном номинальном значении ЭДС питающей системы. На данном этапе расчет ведется до выхода системы на установившийся исходный рабочий режим, что определяется стабилизации контролируемых параметров расчетной схемы. Минимальный набор контролируемых параметров включает ток на входе и напряжение основного узла электрической нагрузки.

2.3.2.2. Задается снижение ЭДС на ступень грубого приближения (рекомендуемое значение снижения 1000 В или 0,1 о.е. от исходного значения ЭДС).

2.3.2.3. Расчет продолжается. Рассчитывается переходный процесс, обусловленный снижением значения ЭДС до заданного уровня.

2.3.2.4. Если режим работы расчетной системы при заданном уровне напряжения стабилизируется в пределах допустимого рабочего режима (п. 1.2.4.) , перейти к п. 2.3.2.2, если нет (возникает лавина напряжений), то перейти к п. 2.3.2.5.

2.3.2.5. Восстановить исходный установившийся рабочий режим системы.

2.3.2.6. Если точность определения значения границы статической устойчивости удовлетворительна, перейти к п. 2.3.2.10, если нет то - к п. 2.3.2.7.

2.3.2.7. Принять ступень снижения напряжения вдвое меньшую предыдущей.

2.3.2.8. Уменьшить ЭДС энергосистемы по сравнению с последним значением ЭДС, при котором статическая устойчивость сохранялась, на значение принятой ступени снижения напряжения.

2.3.2.9. Перейти к п. 2.3.2.3.

2.3.2.10. Расчет закончен.

Значение напряжения в основном узле электрической нагрузки при установленном в ходе расчетов минимальном значение ЭДС Еm питающей энергосистемы является значением границы статической устойчивости данного узла uсу.

2.3.2.11. Определение границы устойчивости завершено.

2.3.2.12. Пример расчета границы статической устойчивости при симметричных внешних возмущениях приведен в приложении №1.

2.3.3. РАСЧЕТ ГРАНИЦЫ СТАТИЧЕСКОЙ УСТОЙЧИВОСТИ ПРИ НЕСИММЕТРИЧНЫХ ВНЕШНИХ ВОЗМУЩЕНИЯХ

2.3.3.1. Запускается программа ELEN, расчет начинается при E1, равном номинальному значению ЭДС питающей системы и E2 = 0 .

На данном этапе расчет ведется до выхода системы на исходный рабочий режим.

2.3.3.2. Рассчитывается граница статической устойчивости для случая симметричных внешних возмущений (п.2.3.2). Полученный результат соответствует определению одной точки (u1 = ucy, u2 = 0) на границе G(u1,u2) = 0 статической устойчивости узла при несимметричных возмущениях (см.п.1.3.5.).

2.3.3.3. Для условии u1 = u2 рассчитывается следующая точка (u1m, u2m) определяемой границы. При этом u1m=u2m.

Расчет выполняется следующим образом:

2.3.3.3.1. Устанавливается исходный рабочий режим системы.

2.3.3.3.2. Задается значение ступени изменения ЭДС энергосистемы. Значение ступени определяется рекомендациями п.2.3.2. Задается ЭДС прямой E1 и обратной Е2 последовательности питающей энергосистемы на входе расчетной схемы. Значение E1 уменьшается по сравнению с исходным значение ЭДС на выбранную ступень. Значение Е2 = E1 .

2.3.3.3.3. Рассчитывается переходный процесс, обусловленный изменением ЭДС питающей энергосистемы.

2.3.3.3.4. Если режим работы системы при заданных значениях E1 и Е2 стабилизируется в пределах допустимого рабочего режима (п.1.2.4.), перейти к п.2.3.3.3.2., если нет, то перейти к п.2.3.3.3.5.

2.3.3.3.5. Восстановить исходный установившийся рабочий режим системы.

2.3.3.3.6. Если точность определения координат точки на границе статической устойчивости удовлетворительна, то перейти к п.2.3.3.3.10, если нет, то - к п.2.3.3.3.7.

2.3.3.3.7. Задать ступень изменения ЭДС вдвое меньше текущей.

2.3.3.3.8. Задать значения прямой и обратной последовательностей ЭДС энергосистемы на ступень ниже последних меньших значений, при которых устойчивость системы сохраняется.

2.3.3.3.9. Перейти к п.2.3.3.3.3.

2.3.3.3.10. Полученные значения прямой u1m и обратной u2m последовательностей напряжения в основном узле нагрузки при соответствующих установленных в ходе расчетов минимальных составляющих ЭДС E1m и Е2m дают вторую точку на определяемой границе устойчивости.

2.3.3.4. Производится расчет точки на границе устойчивости G(u1,u2) = 0 при значении координаты u1 = (u1m-ucy)/2.

Расчет выполняется следующим образом:

2.3.3.4.1. Устанавливается исходный рабочий режим системы.

2.3.3.4.2. Задаются значения ЭДС прямой E1 = (E1m - Em)/2 и обратной Е2 = Е2m/2 последовательностей.

2.3.3.4.3. Рассчитывается переходный процесс при данных значениях составляющих ЭДС питающей энергосистемы.

2.3.3.4.4. Если режим работы системы при заданных значениях E1 и Е2 стабилизируется в пределах допустимого рабочего режима (п. 1.2.4.), перейти к п.2.3.3.4.5, если нет, то перейти к п.2.3.3.4.7.

2.3.3.4.5. Положить новое значение обратной составляющей Е2 ЭДС равным среднему значению между наибольшим ее значением, при котором устойчивость сохраняется, и наименьшим ее значением (для первой итерации положить это значение равным Е2m ) , при котором устойчивость не сохраняется.

2.3.3.4.6. Перейти к п.2.3.3.4.3.

2.3.3.4.7. Если точность определения координат точки на определяемой границе устойчивости удовлетворительна, то перейти к п.2.3.3.4.8, если нет, то перейти к п.2.3.3.4.5.

2.3.3.4.8. Расчет закончен. Координаты точки (u1,u2) границы устойчивости узла, соответствующие последним значениям E1, Е2 ЭДС определены с заданной точностью.

2.3.3.5. Для ориентировочного определения границы устойчивости полученных расчетных результатов достаточно. Для более точного определения границы следует определить еще 3-5 ее расчетных точек, воспользовавшись алгоритмом п.2.3.3.4. При этом координаты точек по E1 следует располагать равномерно.

2.3.3.6. Для обработки полученных результатов, заключающейся в сглаживании всех полученных расчетных точек (u1, u2) функциональной зависимостью (3) следует воспользоваться программой GUN. В результате ее работы будут получены значения коэффициентов b1, b2 и b3.

2.3.3.7. Определение границы устойчивости завершено.

2.3.4. РАСЧЕТ ГРАНИЦЫ ДИНАМИЧЕСКОЙ УСТОЙЧИВОСТИ ПРИ СИММЕТРИЧНЫХ ВНЕШНИХ ВОЗМУЩЕНИЯХ

2.3.4.1. Запускается программа ELEC, расчет начинается при заданном номинальном значении ЭДС питающей системы. На данном этапе расчет ведется до выхода системы на установившийся исходный рабочий режим, что определяется стабилизацией контролируемых параметров расчетной схемы.

2.3.4.2. Рассчитывается максимально допустимая длительность возмущения to при остаточной ЭДС питающей энергосистемы равной нулю.

Расчет выполняется следующим образом:

2.3.4.2.1. Выбирается начальное значение длительности возмущения. Рекомендуемое значение 0,25-0,75 с.

2.3.4.2.2. Моделируется возмущение в виде провала ЭДС на входе расчетной схемы. При этом задается ЭДС энергосистемы Е = 0 к выбранная длительность возмущения.

2.3.4.2.3. Рассчитывается переходный процесс системы, обусловленный заданным возмущением.

2.3.4.2.4. Восстанавливается номинальное значение ЭДС энергосистемы.

2.3.4.2.5. Рассчитывается переходный процесс после восстановления ЭДС.

2.3.4.2.6. Если режим работы системы возвращается к исходному рабочему режиму, то при данном возмущении динамическая устойчивость сохраняется (см. п.1.2.), если нет, то нарушается и тогда следует перейти к п.2.3.4.2.10.

2.3.4.2.7. Если точность определения границы динамической устойчивости удовлетворительна, то следует перейти к п.2.3.4.2.11, если нет, то перейти к п.2.3.4.2.8.

2.3.4.2.8. Выбрать новое значение длительности возмущения, большее предыдущего, но меньшее такого значения, при котором динамическая устойчивость системы нарушается (если такое значение времени уже определено), и перейти к п.2.3.4.2.2.

2.3.4.2.9. Установить исходный рабочий режим системы.

2.3.4.2.10. Выбрать новое значение длительности возмущения, меньшее предыдущего, но большее такого значения, при котором динамическая устойчивость системы сохраняется (если такое значение времени уже определено) и перейти к п. 2.3.4.2.2.

2.3.4.2.11. Расчет допустимой длительности возмущения to при остаточной ЭДС питающей энергосистемы равном нулю закончен. Наибольшее время существования нулевой посадки ЭДС, при котором система после снятия возмущения возвращается к исходному рабочему режиму, дает искомое значение to с заданной точностью.

2.3.4.3. Определение границы устойчивости по формуле (2) п. 1.3.3 завершено, при этом d1=to, d2=ucy , перейти к п.2.3.4.7.

Если имеется необходимость определить границу устойчивости по более точной формуле (1), то перейти к п.2.3.4.4.

2.3.4.4. Рассчитывается точка на границе динамической устойчивости при частичном провале ЭДС. Значение остаточного ЭДС рекомендуется выбирать в пределах 0,7-0,8 от Еm (см.п.2.3.2). Расчет производиться по алгоритму изложенному в п.2.3.4.2. за исключением того, что при выполнении п.2.3.4.2.2. задается не нулевое значение ЭДС энергосистемы, а выбранное для данного пункта. В результате будет получено значение допустимого времени t провала напряжения в основном узле электрической нагрузки до значения u , соответствующего заданному значению Е остаточной ЭДС.

2.3.4.5. Для ориентировочною определения границы устойчивости полученных расчетных результатов достаточно. Для более точного определения границы следует определить ее расчетные точки еще при 3-5 значениях остаточной ЭДС энергосистемы. Точки рекомендуется располагать равномерно. Расчет выполняется согласно п. 2.3.4.2.

2.3.4.6. Для обработки полученных результатов, заключающейся в сглаживании всех полученных расчетных точек (ti,ui) функциональной зависимостью (1) следует воспользоваться программой GUS. В результате ее работы будут получены значения коэффициентов a1, a2 и аз .

2.3.4.7. Определение границы устойчивости завершено.

2.3.4.8. Пример расчета границы динамической устойчивости при симметричных внешних возмущениях приведен в приложении №2.

2.3.5. РАСЧЕТ ГРАНИЦЫ ДИНАМИЧЕСКОЙ УСТОЙЧИВОСТИ ПРИ НЕСИММЕТРИЧНЫХ ВНЕШНИХ ВОЗМУЩЕНИЯХ

2.3.5.1. Запускается программа ELEN, расчет начинается при E1, равном номинальному значению ЭДС питающей системы и Е2 = 0 . На данном этапе расчет ведется до выхода системы на исходный рабочий режим.

2.3.5.2. Рассчитывается точка на границе динамической устойчивости при несимметричном провале ЭДС. Рекомендуемые значения параметров остаточной ЭДС составляют 0,65 - 0,85 по координате E1 и 0.4-0.6 по координате Е2. Алгоритм расчета аналогичен изложенному в п.2.3.4.2 за исключением того, что в п.2.3.4.2.2 задается выбранные для данного пункта значения прямой E1 и обратной Е2 составляющих ЭДС.

2.3.5.3. Для ориентировочного определения границы устойчивости полученных расчетных результатов достаточно. Для более точного определения границы следует определить ее расчетные точки еще при 5-7 парах значений прямой и обратной последовательностей ЭДС.

2.3.5.4. Для обработки полученных результатов, заключающейся в сглаживании всех полученных расчетных точек (t, u1, u2) функциональной зависимостью (4) следует воспользоваться программой GUN. В результате ее работы будут получены значения коэффициентов a1, а2, b1, b2 и b3 .

2.3.5.5. Определение границы устойчивости завершено.

2.3.6. РАСЧЕТ ГРАНИЦЫ ДИНАМИЧЕСКОЙ УСТОЙЧИВОСТИ ПРИ СИММЕТРИЧНЫХ ВНУТРЕННИХ ВОЗМУЩЕНИЯХ

2.3.6.1. Граница динамической устойчивости для симметричных внутренних возмущений может рассматриваться как частный случай границы динамической устойчивости основного узла электрической нагрузки и характеризуется максимально допустимым временем существования трехфазного короткого замыкания в любом заданном узле системы внутреннего электроснабжения предприятия, при котором устойчивость основного узла нагрузки не нарушается.

Для расчета используется программа ELEC.

Расчет выполняется следующим образом:

2.3.6.2. Устанавливается исходный рабочий режим системы.

2.3.6.3. Выбираются узел расчетной схемы и начальное значение длительности существования трехфазного короткого замыкания в нем. Рекомендуемое начальное значение длительности короткого замыкания 0,5-1,0 с.

2.3.6.4. В выбранном узле задается короткое замыкание и его длительность. Рассчитывается переходный процесс, обусловленный указанным возмущением.

2.3.6.5. По истечению заданного времени короткое замыкание снимается и отключается ввод поврежденного узла.

2.3.6.6. Рассчитывается переходный процесс системы после отключения поврежденного узла.

2.3.6.7. Если режим работы системы возвращается к рабочему, близкому к исходному, то при данном внутреннем возмущении устойчивости сохраняется, в таком случае следует перейти к п.2.3.4.8, если нет, то при данной длительности короткого замыкания в заданном узле устойчивость нарушается и следует перейти к п.2.3.6.10.

2.3.6.8. Если точность определения допустимой длительности существования короткого замыкания в заданном узле нагрузки удовлетворительна, то перейти к п.2.3.6.11, если нет - к п.2.3.6.9.

2.3.6.9. Задать новое значение времени существования короткого замыкания в заданном узле нагрузки, большее предыдущего, но меньшее значения времени, при котором устойчивость нарушается (если соответствующая ситуация имела место), и перейти к п.2.3.6.4.

2.3.6.10. Задать новое значение времени существования короткого замыкания в заданном узле нагрузки, меньшее предыдущего, но большее значения времени, при котором устойчивость сохраняется (если соответствующая ситуация имела место), и перейти к п.2.3.6.4.

2.3.6.11. Расчет закончен. Полученное с заданной точностью значение времени (наибольшее, при котором устойчивость после отключения поврежденного узла сохраняется) дает допустимую длительность существования короткого замыкания в заданном узле системы электроснабжения.

2.3.6.12. Определение границы устойчивости завершено.

3. ИСПОЛЬЗОВАНИЕ РЕЗУЛЬТАТОВ РАСЧЕТОВ УСТОЙЧИВОСТИ УЗЛОВ ЭЛЕКТРИЧЕСКОЙ НАГРУЗКИ

3.1. ИСПОЛЬЗОВАНИЕ ПАРАМЕТРОВ ГРАНИЦЫ УСТОЙЧИВОСТИ ПРИ СИММЕТРИЧНЫХ ВНЕШНИХ ВОЗМУЩЕНИЯХ

3.1.1. Параметры границы являются основанием для оценки, анализа и выработки решений по мерам повышения устойчивости узлов электрической нагрузки предприятия.

3.1.2. Необходимость оценки устойчивости узлов электрической нагрузки газоперерабатывающих заводов определяется п.1.1.2. Оценке подлежит устойчивость основных узлов электрической нагрузки предприятия.

3.1.3. Оценочными величинами являются значение границы статической устойчивости ucy и значение максимально допустимого времени to возмущения, не вызывающего нарушения динамической устойчивости узла электрической нагрузки при остаточном напряжении узла равном нулю. Величины uсу и to определяют границу устойчивости узла по формуле (2) п.1.3.3.

3.1.4. Критерием низкого уровня устойчивости узла электрической нагрузки является условие uсу > 0,7 о.е. или to < 0,5 с. В противном случае (если ucy < 0,7 о.е. и to > 0,5 с) уровень устойчивости узла может считаться удовлетворительным.

3.1.5. Низкий уровне устойчивости любого из основных узлов электрической нагрузки предприятия свидетельствует о функциональном несоответствии источника электроснабжения и узла нагрузки. Возможные меры по повышению устойчивости узлов должны быть направлены на увеличение мощности источников питания или разукрупнение основных узлов электрической нагрузки предприятия.

3.1.6. Параметры границы, являются основанием для рационального выбора уставки и выдержки времени срабатывания защиты минимального напряжения узла электрической нагрузки.

3.1.7. Нерациональный выбор параметров защиты минимального напряжения приводит к отключениям нагрузки при некритичных по устойчивости провалах напряжения или к неотключениям нагрузки при критичных провалах напряжения, это в свою очередь сопровождается неупорядоченным отключением электроприемников их индивидуальными защитами, что снижает ресурс электроприемников и затрудняет автоматическое восстановление их нормального режима работы.

3.1.8. Рекомендации данной методики позволяют уточнить положения ПУЭ (п.3.3.85, 5.3.52) в части выбора параметров защит минимального напряжения применительно к конкретным промышленным системам электроснабжения, обеспечивая рациональное использование запаса устойчивости узлов электрической нагрузки предприятия. Вместе с тем приводимые рекомендации не отменяют необходимости учета других известных условий выбора и согласования уставок защит минимального напряжения с действием системы электрической защиты и автоматики и с действием технологических блокировок и защит.

3.1.9. При выборе уставки uзмн и времени срабатывания tзмн одноступенчатой защиты минимального напряжения рекомендуется пользоваться условиями:

1) uзмн = uсy и tзмн = to, если нагрузка узла состоит из электроприемников напряжением выше 1000 В, а также если в состав нагрузки входят и электроприемники напряжением ниже 1000 В, для которых предусмотрены меры от самопроизвольного отключения коммутационных аппаратов;

2) uзмн = ucy, но не менее 0,7 о.е. и tзмн = to, если в состав нагрузки узла входят ответственные электроприемникн напряжением ниже 1000 В, управляемые контакторами и магнитными пускателями без задержки отключения при исчезновении питания, цепи управления которых питаются через данный узел.

3.1.10. Одноступенчатая защита минимального напряжения не позволяет полностью использовать запас устойчивости узла электрической нагрузки. В координатах (t,u) существует зона (рис.1), ограниченная снизу характеристикой зашиты минимального напряжения, а сверху линией границы устойчивости, которая является областью необоснованных отключений узла электрической нагрузки. Если параметры возмущения попадают в указанную зону происходит отключение узла, хотя его устойчивость не нарушается. Сокращение числа необоснованных отключений узла электрической нагрузки может быть достигнуто путем применения многоступенчатой защиты минимального напряжения.

3.1.11. Применению многоступенчатых защит минимального напряжению должны предшествовать мероприятия по устранению самопроизвольного отключения коммутационных аппаратов электроприемников напряжением ниже 1000 В.

3.1.12. При выборе уставок uзмн(i) и времени срабатывания tзмн(i) многоступенчатой защиты минимального напряжения, действующей на отключение всей нагрузки узла, рекомендуется пользоваться условиями:

uзмн(i) = ucy - ;

tзмн(i) = t0(1-uзмн(i))/(1-uзмн(i)/ucy),

где ucy , to - параметры границы устойчивости узла нагрузки; n - число ступеней защиты, рекомендуется n=3; i = 1 ,...n - номер ступени защиты. Выбор уставок начинается с определения уставки напряжения последней ступени защиты, которая принимается равной uзмн(n)= (0,95-0,98) uсу.

3.1.13. При использовании защиты минимального напряжения, последовательно отключающей отдельные группы элсктроприемников, рекомендуемся первой ступенью отключать неответственные электроприемники, второй ступенью электродвигатели парных механизмов технологического резерва, третьей ступенью остальную нагрузку узла. При выборе параметров данной защиты рекомендуется пользоваться условиями:

uзмн(1)=uсy и tзмн(1)= to ;

uзмн(2)= u'cy и tзмн(1)= t'o;

uзмн(3)= u"cy и tзмн(1)= t"o ,

Рис. 1. Границы устойчивости узла электрической нагрузки при симметричных возмущениях в системе электроснабжения: 1 - граница динамической устойчивости в координатах длительности t и остаточного напряжения u; to - допустимое время полного исчезновения напряжения; uсу - граница статической устойчивости; 2 - характеристика защиты минимального напряжения

где uсy, to - параметры границы устойчивости при полной нагрузке узла; u'cy, t'o - параметры границы устойчивости узла без неответственных электроприемников, которые должны быть отключены первой ступенью защиты; u"cy , t"o - параметры границы устойчивости узла без неответственных электроприемников и электродвигателей парных механизмов, которые должны быть отключены первой и второй ступенями защиты. Определение параметров u'cy, t'o и; u"cy, t"o производится аналогично определению uсy, to (см.п.2.3.2 и 2.3.4), но при отключении соответствующей части нагрузки узла.

3.1.14. Рекомендации п.3.1.9-3.1.13 определяют параметры защит минимального напряжения исходя из критерия сохранения устойчивости узлов электрической нагрузки с учетом электротехнических параметров нагрузки и системы электроснабжения. При окончательном выборе параметров защит необходимо учитывать технологические особенности механизмов, установок и процессов предприятия [5, 9, 12].

3.2. ИСПОЛЬЗОВАНИЕ ПАРАМЕТРОВ ГРАНИЦЫ УСТОЙЧИВОСТИ ПРИ СИММЕТРИЧНЫХ ВНУТРЕННИХ ВОЗМУЩЕНИЯХ

3.2.1. Аварийные возмущения, обусловленные короткими замыканиями во внутренних электрических сетях, приводят к снижению напряжения в узлах нагрузки системы электроснабжения, что может сопровождаться нарушением ее устойчивости.

3.2.2. Значения допустимых по соображениям сохранения устойчивости основного узла электрической нагрузки (системы в целом) времен существования коротких замыканий в узлах системы внутреннего электроснабжения являются ограничениями сверху для выбора выдержек времени срабатывания токовых защит вводов этих узлов.

3.2.3. Выдержка времени срабатывания токовой защиты с действием на отключение ввода узла системы внутреннего электроснабжения не должна превышать допустимого по устойчивости времени существования короткого замыкания в данном узле.

3.2.4. Ограничением снизу для выдержки времени срабатывания токовой защиты ввода узла системы внутреннего электроснабжения является требование обеспечения селективности работы защит.

3.3. ИСПОЛЬЗОВАНИЕ ПАРАМЕТРОВ ГРАНИЦЫ УСТОЙЧИВОСТИ ПРИ НЕСИММЕТРИЧНЫХ ВНЕШНИХ ВОЗМУЩЕНИЯХ

3.3.1. Более полное использование запаса устойчивости узла электрической нагрузки предприятия возможно при совпадении характеристики защиты минимального напряжения с границей устойчивости в координатах прямой и обратной составляющих напряжения.

3.3.2. Рассматриваемая граница используется при полном анализе устойчивости узлов электрической нагрузки предприятия; выборе параметров защиты минимального напряжения, в состав которой входит фильтр симметричных составляющих, многофункциональное программируемое реле; при разработке и освоении новых средств систем защиты и автоматики.

4. ЛИТЕРАТУРА

1. ГОСТ 21027-75. Системы энергетические. Термины и определения: М: Издательство стандартов, 1975.

2. ГОСТ 23875-88. Качество электроэнергии. Термины и определения: М: Издательство стандартов, 1988.

3. Правила устройства электроустановок/ Минэнерго СССР.- 6-е изд., перераб. и доп. - М: Энергоатомиздат, 1986.

4. Руководящие указания по устойчивости энергосистем/ Минэнерго СССР.- М.: СПО "Союзтехэнерго", 1984.

5. Руководящие технические материалы по проектированию электрической части газоперерабатывающих заводов/ Газпром. - М, 1990.

6. Жданов П.С. Вопросы устойчивости электрических систем. - М.: Энергия, 1979.

7. Веников В.А.  Переходные электромеханические процессы в электрических системах. - М.: Высшая школа, 1985.

8. Гуревич Ю.Е., Либова Л.Е., Окин А.А. Расчеты устойчивости и противоаварийной автоматики в энергосистемах. - М.: Энергоатомиздат, 1990.

9. Голоднов Ю.М. Самозапуск электродвигателей. - М.: Энергоатомиздат, 1985.

10. Корогодский В.И., Кужеков С.Л., Паперно Л.Б. Релейная защита электродвигателей напряжением выше 1 кВ. - М.: Энергоатомиздат, 1987.

'>

Документ сокращен, так как он очень большой. Для просмотра полной версии этого документа пройдите по ссылке Бесплатный заказ нужного документа

 
< Пред.   След. >
Полезное: