Проектирование и строительство нормативно-методические документы arrow Объекты нефтяной и газовой промышленности arrow ВРД 39-1.10-026-2001  
23.01.2018
    
ВРД 39-1.10-026-2001

Система нормативных документов в газовой промышленности
ВЕДОМСТВЕННЫЙ РУКОВОДЯЩИЙ ДОКУМЕНТ

МЕТОДИКА ОЦЕНКИ ФАКТИЧЕСКОГО ПОЛОЖЕНИЯ И СОСТОЯНИЯ ПОДЗЕМНЫХ ТРУБОПРОВОДОВ

ВРД 39-1.10-026-2001

Москва 2001

Содержание

 TOC o "1-3" p " " h z ПРЕДИСЛОВИЕ

ВВЕДЕНИЕ

1 ОБЛАСТЬ ПРИМЕНЕНИЯ И ОБЩИЕ ПОЛОЖЕНИЯ

1.1 Область применения

1.2 Общие положения

2 ОПРЕДЕЛЕНИЕ ОСЕВОЙ ЛИНИИ, ПРОСТРАНСТВЕННОГО ПОЛОЖЕНИЯ И КРИВИЗНЫ ПОДЗЕМНОГО ТРУБОПРОВОДА

2.1 Определение осевой линии трубопровода

2.2 Определение глубины заложения подземного трубопровода

2.3 Определение пространственного положения трубопровода

2.4 Вычисление радиуса прогиба трубопровода

3 МЕТОДЫ ИЗМЕРЕНИЯ И ОПРЕДЕЛЕНИЯ СОСТОЯНИЯ ИЗОЛЯЦИОННЫХ ПОКРЫТИЙ ТРУБОПРОВОДОВ

3.1 Контактные методы измерений

ПРИМЕР 3.1

3.2 Бесконтактные методы измерений тока

ПРИМЕР 3.2

3.3 Измерение поляризационных потенциалов

3.3.1 Экстраполяционные методы

ПРИМЕР 3.3 Измерения по изменению параметров СКЗ

ПРИМЕР 3.4 Измерения в зонах блуждающих токов

ПРИМЕР 3.5 Измерения с двумя ЭС

3.3.2 Метод компенсации

ПРИМЕР 3.6 Измерение поляризационных потенциалов

3.3.3 Метод отключения источника поляризации и экстраполяции на нулевое время отключения

ПРИМЕР 3.7 Экстраполяция поляризационного потенциала на момент t0

3.3.4 Метод "Интенсивной технологии"

ПРИМЕР 3.8

4 ЗАКЛЮЧЕНИЕ

Литература

ПРИЛОЖЕНИЕ

Таблицы и номограммы для определения сопротивления изоляции по величинам затухания сигнала для частот F = 3,1 Гц и F = 1000 Гц.

ДОПОЛНЕНИЕ

Калибровка приемных устройств систем оценки состояния изоляционных покрытий и трассоискателей, не являющихся средствами измерений

ПРЕДИСЛОВИЕ

РАЗРАБОТАН

 

НТЦ "Ресурс газопроводов" ООО "ВНИИГАЗ"

СОГЛАСОВАН

 

Госгортехнадзором РФ письмом № 10-03/974 от 22.12.2000 г.; ООО "ГАЗНАДЗОР" ОАО "ГАЗПРОМ" письмом № 30-1-9/675 от 16.11.2000 г.

УТВЕРЖДЕН

 

Членом Правления ОАО "ГАЗПРОМ" Будзуляком Б.В. 29.01.2001 г.

ВВЕДЕН В ДЕЙСТВИЕ

 

29.01.2001 г.

ВВОДИТСЯ ВЗАМЕН

 

Методики оценки фактического положения и состояния подземных трубопроводов. М., 1992 г.

ИЗДАН

 

Обществом с ограниченной ответственностью "Научно-исследовательский институт природных газов и газовых технологий - ВНИИГАЗ" (ООО "ВНИИГАЗ").

ВВЕДЕНИЕ

"Методика оценки фактического положения и состояния подземных трубопроводов" является практическим руководством для организаций, проводящих обследования подземных трубопроводов без вскрытия грунта.

Настоящая МЕТОДИКА создана на базе "Методики оценки фактического положения и состояния подземных трубопроводов", ВНИИГАЗ, 1992 г.; "Инструкции по интегральной оценке состояния изоляционного покрытия законченных строительством участков трубопроводов на переменном токе", ВНИИГАЗ, 1989 г.; "Интенсивной технологии измерения поляризационных потенциалов", APRT; системного применения современных методик с использованием результатов натурных измерений на трассах трубопроводов ОАО "ГАЗПРОМ": Мострансгаза, Севергазпрома, Тюментрансгаза и др., выполненных в течение 1990-1998 гг.

МЕТОДИКА может применяться для определения глубины заложения трубопровода, для определения его фактического положения в пространстве и кривизны бесконтактными методами путем измерения составляющей электромагнитного поля, создаваемого переменным током, протекающим по трубопроводу от генератора низкой частоты; может применяться для определения состояния изоляционного покрытия, интегральной величины его сопротивления изоляции, интегральной величины площади дефектов, для определения скорости старения изоляционного покрытия, для определения остаточного ресурса изоляционного покрытия, поиска сквозных повреждений в изоляционном покрытии; для оценки защищенности металла трубы катодной защитой по величинам поляризационных потенциалов.

МЕТОДИКА предназначена для предприятий газовой промышленности, в том числе и для организаций, эксплуатирующих любые металлические трубопроводы. Материалы МЕТОДИКИ могут быть использованы в практике научно-исследовательских институтов.

МЕТОДИКА разработана в лаборатории надежности газопроводных конструкций НТЦ "Ресурс газопроводов" ВНИИГАЗа старшим научным сотрудником Сидоровым Б.В., доктором технических наук Харионовским В.В., в ЗАО НИИИН МНПО "Спектр" начальником отдела Мартыновым С.А. и в фирме "Передовой ремонт и обслуживание трубопроводов" (Advanced Pipeline Rehabilitation and Training LTD (APRT)) доктором технических наук Лидсом Д.М. (Leeds J.M.) при активном участии в натурных исследованиях сотрудников лаборатории НГК: м.н.с. Широкова М.А., инж. 1 кат. Бакуленко М.Н., м.н.с. Чуковой Н.Н., к.т.н. Степанова И.В.

1 ОБЛАСТЬ ПРИМЕНЕНИЯ И ОБЩИЕ ПОЛОЖЕНИЯ

1.1 Область применения

Настоящая "Методика оценки фактического положения и состояния подземных трубопроводов" предназначена для методического обеспечения при обследованиях магистральных трубопроводов предприятиями газовой промышленности, в том числе и для организаций, эксплуатирующих любые металлические трубопроводы. МЕТОДИКА может быть также использована в практических работах научно-исследовательскими институтами.

МЕТОДИКА может применяться при определении глубины заложения металлических трубопроводов, при определении их фактического положения в пространстве и кривизны бесконтактными методами путем измерения составляющей электромагнитного поля, создаваемого переменным током, протекающим по трубопроводу от генератора низкой частоты; может применяться для определения состояния изоляционного покрытия и интегральной величины его сопротивления, интегральной величины площади дефектов; для определения скорости старения изоляционного покрытия; для определения остаточного ресурса изоляционного покрытия, поиска сквозных повреждений в изоляционном покрытии; для оценки степени защищенности металла трубопровода катодной защитой по величинам поляризационных потенциалов и по результатам применения технологии "интенсивных измерений".

Настоящая МЕТОДИКА разработана на основе научно-исследовательских работ ВНИИГАЗа [2, 3] с использованием результатов, полученных в полевых условиях на участках газопроводов СЕВЕРГАЗПРОМА, ПЕРМТРАНСГАЗА и др., и служит для определения положения трубопровода в пространстве и состояния изоляционного покрытия на нём с применением технологии "интенсивных измерений", современных технических средств и методик, разработанных во ВНИИГАЗе, при наличии РАЗРЕШЕНИЯ или ЛИЦЕНЗИИ на проведение этих работ аттестованной аппаратурой.

1.2 Общие положения

1.1 Настоящая МЕТОДИКА должна быть использована при обследовании изолированных металлических магистральных трубопроводов с целью определения их положения и состояния.

1.2 МЕТОДИКА предназначена для организаций, эксплуатирующих подземные металлические трубопроводы (газопроводы и любые металлические продуктопроводы), и организаций, проводящих специализированные обследования.

1.3 Основным документом, определяющим объём и конкретные задачи обследования, является задание на проведение обследования трубопровода, а также возможность выполнения дополнительных исследований, позволяющих получить более полную информацию об обследуемом объекте.

1.4 По окончании обследования в течение не более 30 дней в соответствии с заданием рабочая группа составляет общий акт или протокол, в котором обобщаются результаты, полученные на месте обследования участка трубопровода. Акт или протокол подписывают ответственные представители рабочей группы специалистов и заверяет организация, эксплуатирующая обследуемый участок.

1.5 При наличии задания о выдаче заключения по обследуемому участку рабочей группой специалистов подготавливается предварительное заключение, которое после необходимого анализа всех данных измерений уточняется и утверждается руководством организации, выдавшей задание.

1.6 Изложенное выше не исключает возможности проведения дополнительных работ (операций), если это требуется для выполнения поставленных в задании целей. Все эти работы (операции) должны быть подробно освещены в дополнении к акту или протоколу с объяснением цели и необходимости выполнения указанных операций. При этом недопустимо, чтобы действия, совершаемые при обследовании, ухудшали состояние покрытия трубопровода.

1.7 Па участке трубопровода места с повреждением изоляционного покрытия отмечают вешками (колышками) на дневной поверхности над осью трубопровода для дальнейших их измерений локальными методами.

1.8 Результаты электрометрических работ представляют в графическом виде.

1.9 При отсутствии электрометрических данных эксплуатационных измерений, что может иметь место при внеплановых обследованиях, в первую очередь обследуются участки трубопроводов, которые наиболее опасны в коррозионном отношении. Коррозионно-опасными следует считать участки в соответствии с требованиями ГОСТ Р 51164-98:

- горячие участки трубопровода (с температурой транспортируемого продукта выше 40 °С);

- участки с возможными продольными или поперечными перемещениями трубопровода, которые определяют расчетным путем или экспериментально;

- участки трубопровода, уложенного в грунтах, а также в местах с широко развитым овражно-балочным рельефом (склоны оврагов, балок);

- участки трассы с режимом переменной влажности (ручьи, поймы рек, заливные луга, поливные земли, арыки и др.);

- переходы под железными и автомобильными дорогами и выходы трубопровода из грунта на воздушные переходы.

1.10 Участники обследования, прежде чем приступить к нему, должны пройти вводный инструктаж в эксплуатационной организации по технике безопасности и производственной санитарии в соответствии с действующими правилами и инструкциями.

2 ОПРЕДЕЛЕНИЕ ОСЕВОЙ ЛИНИИ, ПРОСТРАНСТВЕННОГО ПОЛОЖЕНИЯ И КРИВИЗНЫ ПОДЗЕМНОГО ТРУБОПРОВОДА

Все работы на трассе любого трубопровода начинаются с поиска осевой линии (проекции осевой линии на дневную поверхность) трубопровода с дневной поверхности, определения глубины заложения трубопровода от его верхней образующей до уровня дневной поверхности, определения пространственных координат этой точки на дневной поверхности и определения кривизны трубопровода на поворотах, балках, оврагах, под водными преградами и на возвышенностях. Для этого используют трассоискатели или другие многофункциональные приборы или системы, состоящие из генераторов и приемных устройств.

Подключение генераторов низкой частоты к трубопроводу с непосредственной связью показано на рис.2.1, а с бесконтактной связью - на рис.2.2.

Рис.2.1 Схема гальванической связи генератора с трубопроводом

Рис.2.2 Схема индуктивной связи генератора с трубопроводом

2.1 Определение осевой линии трубопровода

Для определения проекции осевой линии трубопровода на дневной поверхности необходимо, чтобы преобразователь (датчик), расположенный над трубопроводом, регистрировал минимальный сигнал, излучаемый трубопроводом (рис.2.3, 2.4). Чтобы найти проекцию оси трубопровода на дневной поверхности, необходимо найти место с минимальной величиной сигнала по индикатору приемника. Если пойти по контуру "а" (рис.2.5), и величина сигнала при этом не уменьшится, тогда необходимо увеличить радиус обхода по контуру "b" (рис.2.5). При обходе по контуру "b" при пересечении оси трубопровода сигнал на индикаторе приемника уменьшится почти до нуля. По минимальной величине сигнала на дневной поверхности отмечают точку проекции осевой линии трубопровода на местности. Продолжают движение по контуру "b" до следующего уменьшения величины сигнала на индикаторе приемника и по минимальному его значению делают следующую отметку на местности. По двум отметкам на местности можно провести проекцию осевой линии трубопровода между двумя точками и определить положение и направление трубопровода на местности.

Используя первые две отметки на местности как створ, который дает направление хода трубопровода под землей, находят последующие точки через определенные интервалы и делают отметки на местности.

По результатам отметок мест осевой линии на местности строят проекцию осевой линии трубопровода, углы поворота, радиусы изгиба. Угол поворота определяют продолжением осевых линий до их пересечения и одним из известных методов находят величину угла и радиус изгиба трубопровода.

2.2 Определение глубины заложения подземного трубопровода

Для определения глубины заложения уложенного в грунт трубопровода может быть использован любой трассоискатель или многофункциональное приемное устройство отечественного или зарубежного производства, например БИТ-1 (опытный завод ООО "ВНИИГАЗ", Россия) [30], U-SCAN (C.SCOPE, Enqland).

Определение глубины заложения трубопровода следует производить через каждые 50-100 м и в местах изменения рельефа местности, т.е. в местах изгиба осевой линии трубопровода, а также под шоссейными и железными дорогами [1, 3, 4, 26].

Измерение глубины заложения трубопровода простейшими трассоискателями с одним преобразователем (датчиком) (рис.2.3) следует производить в следующем порядке:

1) Устанавливают вертикально электромагнитный преобразователь и, перемещая его перпендикулярно оси трубопровода на одном уровне над дневной поверхностью, определяют по минимальной величине сигнала на индикаторе приемника (стрелочном, звуковом или ином) осевую линию трубопровода, отмечают на поверхности земли место минимальной величины сигнала по индикатору приемного устройства Х0.

2) Устанавливают электромагнитный преобразователь под углом 45° к дневной поверхности и перемещают его в одну из сторон перпендикулярно оси трубопровода до появления минимальной величины сигнала на индикаторе приемника, отмечают на поверхности земли место минимальной величины сигнала приемного устройства Х1

3) Уже установленный электромагнитный преобразователь под углом 45° к дневной поверхности необходимо перемещать в противоположную сторону от оси трубопровода, также перпендикулярно, до появления на индикаторе сигнала минимальной величины и отметить на поверхности земли место минимального показания величины сигнала приемного устройства Х2.

4) Измеряют длину между нулевыми отметками от Х0 до X1 и от Х0 до Х2 на дневной поверхности и определяют их среднюю величину Хср, которая и будет равна глубине заложения трубопровода, h от его осевой линии

(X1 + X2)/2 = XCP = h.                                                                              (2.1)

Рис.2.3 Определение оси и глубины заложения трубопровода

Рис.2.4 Определение оси и глубины заложения трубопровода по минимальному сигналу и измерение тока в трубопроводе индуктивными преобразователями

Глубину заложения трубопровода с исключением обваловки определяют по формуле

ho = h - hв = Хcр - hв,                                                                                 (2.2)

где h - глубина заложения до оси трубопровода с обваловкой, м; ho - глубина заложения трубопровода от дневной поверхности до осевой линии, м; hв - высота вала относительно уровня дневной поверхности, м (рис. 2.3).

Без обваловки глубину заложения трубопровода h3 до верхней образующей определяют из выражения

h3 = ho - RT,                                                                                               (2.3)

где Rt - радиус трубопровода, м.

В местах изгиба трубопровода, а также в случае обследования параллельных трубопроводов следует производить измерения глубины в обе стороны от осевой линии, причем конечным результатом выбирают среднее арифметическое значение двух измерений

h3 = (X1 + X2)/2 - RT,                                                                               (2.4)

где Х1, Х2 - расстояния слева и справа от осевой линии трубопровода до минимальных значений величин сигналов, м; Rt - радиус трубопровода, м.

Результаты измерений на участке обследования трубопровода следует сравнить с соответствующими требованиями п. 1 и 2 и зафиксировать в таблице.

Глубину заложения трубопровода измеряют и другим способом [7] (рис.2.4; 3.4 и 3.5), реализованном в современных приемных устройствах и трассоискателях с цифровой индикацией, которые позволяют делать вычисления с помощью встроенных контроллеров.

На рис.3.4 схематично показано расположение преобразователей в трассоискателях с дифференциальным включением обмоток. Глубина заложения в таких конструкциях от осевой линии трубопровода до осевых линий нижних преобразователей будет вычисляться по формуле

h = Δh · Н2 / (H1 - H2),                                                                              (2.5)

где h - глубина заложения трубопровода до его осевой линии, м; Δh - расстояние между осевыми линиями нижних преобразователей и осевыми линиями верхних преобразователей; H1, Н2 - дифференциальные разности напряженности магнитного поля нижних и верхних преобразователей, А/м.

На рис.3.5 схематично показано расположение преобразователей, электрически не связанных между собой. Глубина заложения трубопровода в этом случае вычисляется по формуле

                               (2.6)

где h - глубина заложения трубопровода от его осевой линии до осевых линий нижних преобразователей, м; Δh - расстояние между осевыми линиями нижних преобразователей и осевыми линиями верхних преобразователей, м; Н11, Н12 - напряженности магнитного поля, измеренные каждым нижним преобразователем, А/м; H21, H22 - напряженности магнитного поля, измеренные каждым верхним преобразователем, А/м.

Рис. 2.5 Определение положения подземного трубопровода на местности по нахождению осевой линии преобразователем-датчиком приемного устройства

2.3 Определение пространственного положения трубопровода

Для того, чтобы определить пространственное положение трубопровода в точке над трубопроводом, где уже измерена глубина его заложения, необходимо применять спутниковую навигационную систему глобального позиционирования GPS (GPS - Global Positioning Sistem). Для определения места (координат) в точках измерений, расстояний между этими точками и их альтитуды (высоты относительно уровня моря) предпочтительно использовать двухчастотные приемники NAVSTAR/GPS или приемники ГЛОНАСС/GPS, имеющие точность отклонения при определении места (координат) и расстояний между точками измерений до 20 мм. Такая высокая точность необходима для дальнейших расчетов механических напряжений металла трубопровода по его пространственному положению в грунте.

С целью определения координат, горизонтального и вертикального углов, высоты относительно уровня моря и расстояния между точками измерений устанавливают приемное устройство GPS на дневную поверхность в точке измерения глубины заложения трубопровода на проекции его осевой линии как показано на рис.2.6, выполняя все операции в соответствии с инструкцией по эксплуатации на GPS. Для этого, после соответствующей настройки приемника GPS и измерений, записывают для начальной точки (эту точку помечают как реперную) и для последующих точек курсовой угол (К.угол) относительно реперной точки, широту (Ш), долготу (Д), альтитуду (А), расстояние между точками измерений (L), угол наклона (Н.угол) и глубину заложения трубопровода (НО), измеренную трассоискателем, заносят в таблицу для последующего расчета.

Рис. 2.6 Использование системы глобального позиционирования (GPS) в точках измерения глубины заложения трубопровода

Угол наклона осевых линий трубопровода между двумя точками измерений вычисляется по формуле

Н.угол = arc sin ((Ai+1 - Ai - Hoi+1 + Hoi)/L) [градус],                             (2.7)

где Ai - предыдущая величина альтитуды, измеренная в точке i; Ai+1 - последующая величина альтитуды, измеренная в точке i+1; Hoi - глубина заложения трубопровода от дневной поверхности до его осевой линии, измеренная в точке i; Hoi+i - глубина заложения трубопровода от дневной поверхности до его осевой линии, измеренная в точке i+1; L - расстояние, измеренное между точкой i и точкой i+1; arc sin(...) - тригонометрическая функция.

Таблица 2.1

Измеренные и вычисленные величины пространственного положения

№ измерения

0 (Репер)

1

2

4

4

К.угол

0

 

 

 

 

Ш

 

 

 

 

 

Д

 

 

 

 

 

А

 

 

 

 

 

L

0

 

 

 

 

НО

 

 

 

 

 

Н.угол

0

 

 

 

 

2.4 Вычисление радиуса прогиба трубопровода

Для определения радиуса прогиба (Rnp) участка подводного или подземного металлического сооружения (рис.2.7) измеряют глубину заложения трубопровода в трёх точках и более на одном уровне дневной поверхности, группируя эти точки измерений по три на равных расстояниях между каждым измерением глубины заложения трубопровода для последующего вычисления фактического радиуса прогиба трубопровода [4].

Рассмотрим случай, когда H1 = H3 при ограничениях:

H2 > H1; H2 > H3 и L1 = L2 = L.                                                                  (2.8)

Сначала найдем величину стрелы прогиба трубопровода Нс по формуле

Hc = H2 - H1 = H2 - H3,                                                                              (2.9)

где H1, H2, Н3 - глубины заложения трубопровода в точках измерения, м;

L1, L2, L - расстояние между точками измерения глубины заложения на дневной поверхности, м;

Нс - величина стрелы прогиба трубопровода, м (рис. 2.7).

Величину радиуса прогиба трубопровода Rnp находим из выражения

Rnp = L2/(2Hc) + Hc/2,                                                                              (2.10)

где Rnp - радиус прогиба трубопровода, м.

Рассмотрим второй случай вычисления радиуса прогиба трубопровода, когда измеренные глубины залегания трубопровода отличаются по крайним точкам при равных расстояниях между точками измерения, при условии

H1 > H3 и L1 = L2 = L.                                                                                (2.11)

Рис. 2.7 Измерение глубины заложения трубопровода под водной преградой с помощью трассоискателя и вычисление радиуса прогиба (Rnp) трубопровода

Вычислим величину стрелы прогиба при тех же обозначениях:

Нс = Н2 - Н1 + (Н1 - Н3) / 2 = Н2 - Н3 - (H1 - Н3) / 2.                               (2.12)

В соответствии с условием (2.11) и вычисленной величиной стрелы прогиба вычисляется радиус прогиба трубопровода по формуле

Rnp = L2 / (2 Нс) + Нс/2.                                                                           (2.13)

Если сделать несколько измерений на подводном переходе или на подземном участке трубопровода и вычислить радиус прогиба для различных комбинаций троек измеренных глубин заложения и различных расстояний между точками измерений, то можно вычислить среднюю величину радиуса прогиба трубопровода

R*np = (Rnp1 + Rnp2 + … + Rnp.n)/n,                                                          (2.14)

где R*np - средняя величина радиуса прогиба трубопровода, м; п - количество

вычисленных величин радиуса прогиба на этом участке трубопровода.

Из серии измерений, выполненных на определенном участке трубопровода, можно найти минимальную величину вычисленного радиуса прогиба трубопровода, если имеется такая необходимость.

3 МЕТОДЫ ИЗМЕРЕНИЯ И ОПРЕДЕЛЕНИЯ СОСТОЯНИЯ ИЗОЛЯЦИОННЫХ ПОКРЫТИЙ ТРУБОПРОВОДОВ

Развитие подземного трубопроводного транспорта предъявляет все более жесткие требования к состоянию изоляционного покрытия. Для обеспечения надежной работы подземных трубопроводов [1] требуется применять высокопроизводительные методы оценки состояния изоляционных покрытий протяженных подземных сооружений.

Практические обследования состояния изоляционного покрытия участков подземных металлических трубопроводов в настоящее время сводятся к определению состояния изоляционного покрытия и мест его повреждения. При этом используются как контактные методы измерений [2, 6] на переменном токе, так и бесконтактные [3, 7, 9, 12, 26, 27]. Кроме бесконтактных методов на переменном токе используются бесконтактные методы измерения постоянного тока, протекающего по металлическому трубопроводу от станции катодной защиты (СКЗ), с использованием датчиков Холла, феррозондов и других датчиков, которые чувствительны к постоянным токам, протекающим по протяженным металлическим сооружениям.

Контактные и бесконтактные методы измерений переменных и постоянных токов, протекающих по протяженному трубопроводу, позволяют оценивать состояние изоляционного покрытия, величину электрического сопротивления изоляции трубопровода, места повреждения изоляционного покрытия, а также определять места сквозных повреждений изоляционного покрытия и участки подземного металлического трубопровода, требующие более детальных обследований другими методами, которые будут рассмотрены ниже. С помощью измерений постоянного тока в трубопроводе бесконтактными методами, кроме оценки состояния изоляционного покрытия, дополнительно можно определять распределение выпрямленного тока катодных станций и измерять его величину практически для всей зоны действия СКЗ.

Перечисленные выше методы интегральной оценки состояния изоляционных покрытий будут мало эффективны на площадках подземных трубопроводов компрессорных, насосных и газораспределительных станций, так как трубопроводы на этих площадках имеют много взаимных пересечений, и измеренная величина сигнала может быть искажена на 20 % и более.

Ниже рассматриваются методы измерений переменных электрических напряжений и токов на линейной части трубопровода для последующего определения состояния изоляционного покрытия.

3.1 Контактные методы измерений

Для определения состояния изоляционного покрытия используют контактные методы измерения сигналов на переменном токе, которые можно производить на различных частотах от единиц герц до десятков килогерц. Для этого используют генераторы переменного тока или модуляторы постоянного тока и приемные устройства, настроенные на фиксированные частоты и имеющие высокое входное сопротивление от одного МОм и более.

Измерения начинают после подключения генератора или модулятора к электрическому выводу от трубопровода на контрольно-измерительном пункте (КИП) трубопровода, с одной стороны, и к временному заземлению или к выводу КИП параллельного трубопровода, с другой стороны. Вход приемного устройства подключают одним проводом к измерительному выводу следующего КИПа, а другим проводом - к измерительному электроду, устанавливаемому в грунте, например, в точке А (В, С,...), как показано на рис.3.

После всех настроек генератора и приемника в соответствии с инструкцией по эксплуатации на эти приборы производят измерения величин сигналов. Измеряют величину сигнала, например, в точке А (рис.3), делая не менее трех отсчетов, а их результаты записывают в таблицу. Следующее измерение производят в точке В, также делая не менее трех отсчетов; измеряют расстояние между точками измерений А и В, результаты которых также записывают в таблицу. Далее измеряют величину сигнала в следующей точке, например, в точке С, и расстояние между точками измерений В и С и т.д. После этого вычисляют затухание сигнала (α) по формуле [3]

α = 2000 · lg (Ua/Ub)/La-b,                                                                         (3.1)

где α - затухание сигнала между точками измерений А и В, мБ/м; Ua - величина сигнала, измеренная в точке В, мВ; Ub - неличина сигнала, измеренная в точке В, мВ; La-b - расстояние между точками измерений А и В, м.

Примечание. Индексы физических величин даны строчными буквами здесь и ниже.

ПРИМЕР 3.1

Рассмотрим в качестве примера измерения сигналов приемником типа УДИП-1м на трубопроводе диаметром 1220 мм с пленочным изоляционным покрытием и сроком службы трубопровода 9 лет. Генератор подключен к трубопроводу в девяти километрах от места первого измерения. Частота генератора Fг равна 3,1 Гц. Величина сигнала, измеренная в первой точке около КИП (рис.3), Ua составила 225 мВ. Величина сигнала около второго КИПа, находящегося на расстоянии La-b = 1350 м, Ub составила 190 мВ (таблица 3.1).

Рис. 3 Схема подключения генератора (модулятора) и измерение сигналов переменных напряжений по длине трубопровода приемным устройством, например, типа УДИП-1 м

Таблица 3.1

Измеренные напряжения на интервале А-С

Количество отсчетов

Измеренные величины напряжения в точках, мВ

Ua

Ub

Uс

1

225

185

110

2

220

195

115

3

230

190

110

4

 

 

120

5

 

 

120

Средняя

225

190

115

Теперь по формуле (3.1) вычислим величину затухания сигнала:

αa-b = 2000 · lg (Ua/Ub)/La-b = 2000 · lg (225/190) /1350 = 0,109 мБ/м.

Из таблиц или из номограммы для частоты F = 3,1 Гц и диаметра трубопровода Дт = 1220 мм находим интегральную величину сопротивления изоляционного покрытия для этого интервала, которое равно Rи = 7800 Ом·м2. Состояние изоляционного покрытия этого интервала характеризуется как ХОРОШЕЕ, и имеющее САМЫЕ МЕЛКИЕ ОДИНОЧНЫЕ ДЕФЕКТЫ в покрытии площадью Sд = 0,016 мм22 на каждом квадратном метре поверхности покрытия.

Теперь измерим величину сигнала в точке С, находящейся на расстоянии Lb-c, равном 800 м от предыдущей точки измерения В. Измеренная величина сигнала Uc в точке С равна 115 мВ. Вычислим величину затухания сигнала между измерениями в точках В и С по формуле (3.1):

αb = 2000 · lg (Ub/Uc)/Lb = 2000 · lg (190/115)/800 = 0,545 мБ/м.

Аналогично, из таблиц или с помощью номограммы по величине затухания сигнала, находим величину сопротивления изоляционного покрытия RH на интервале измерений между точками А и В, которое равно 500 Ом·м2.

По эмпирической формуле с учетом исследований [13] найдем максимальную интегральную величину площади сквозного дефекта Sд на каждом квадратном метре площади изоляционного покрытия трубопровода

                                                                                (3.2)

где к = 1·106 - эмпирический коэффициент пропорциональности Ом2·м2·мм2;

Rи - сопротивление изоляционного покрытия на площади одного квадратного метра, Ом·м2.

Изоляционное покрытие на этом интервале характеризуется как ПЛОХОЕ и имеет сквозные дефекты в покрытии площадью

на каждом квадратном метре поверхности трубопровода. Графики интегральных величин сопротивления и интегральных величин площади оголения металла трубопровода показаны на рис.3.1а и 3.1б. Следовательно, необходимо более детальное обследование этого интервала с меньшим шагом между точками измерений В и С.

Теперь проведем измерения внутри интервала В-С в точке D на расстоянии Lb-d, равном 200 м от точки В (таблица 3.2). Средняя величина сигнала составила величину Ud, равную 175 мВ. Вычислим величину затухания сигнала между точками измерений В и D по формуле (3.1) и получим

αb-d = 2000 · lg (Ub/Ud)/Lb-d = 2000 · lg (190/175)/200 = 0,357 мБ/м.

Таблица 3.2

Измерение напряжения на интервале B-F

Количество измерений

Измеренные величины напряжения в точках, мВ

Ub

Ud

Ue

Uf

1

185

170

120

110

2

190

180

125

120

3

195

175

120

120

4

 

170

130

130

5

 

180

130

120

Средняя

190

175

125

120

Из таблиц или из номограммы по величине затухания сигнала найдем величину сопротивления изоляционного покрытия на этом интервале B-D. Величине затухания сигнала соответствует величина сопротивления покрытия Rи = 1020 Ом·м2, которое характеризуется как УДОВЛЕТВОРИТЕЛЬНОЕ и имеет допустимые мелкие сквозные дефекты в изоляционном покрытии до величины

на каждом квадратном метре поверхности трубопровода.

Теперь измерим величину сигнала Ue в точке Е, отстоящей от точки D на расстоянии Ld, равном 100 м. Средняя величина сигнала равна 125 мВ. По формуле (3.1) вычислим величину затухания сигнала на интервале между точками измерений D и Е

αd.e = 2000 · lg (Ud/Ue)/Ld = 2000 · lg(175/125)/100 = 2,92 мБ/м.

Из таблиц или из номограммы по величине затухания сигнала найдем величину сопротивления изоляционного покрытия на этом интервале D-E. Величине затухания сигнала соответствует величина сопротивления покрытия Rи, равная 30 Ом·м2, которое характеризуется как ОЧЕНЬ ПЛОХОЕ и имеет сквозные дефекты в изоляционном покрытии до

на каждом квадратном метре поверхности трубопровода.

Теперь измерим величину сигнала Uf в точке F, отстоящей от точки Е на расстоянии Le-f, равном 100 м. Средняя величина сигнала равна 120 мВ. По формуле (3.1) вычислим величину затухания сигнала на интервале между точками измерений Е и F

αe-f = 2000 · lg(Uc/Uf)/Le-f = 2000-lg(l25/120)/100 = 0,355 мБ/м.

Из таблиц или из номограммы по величине затухания сигнала найдем величину сопротивления изоляционного покрытия на этом интервале E-F. Величине затухания сигнала соответствует величина сопротивления покрытия Rи, равная 1030 Ом·м2, которое характеризуется как УДОВЛЕТВОРИТЕЛЬНОЕ и имеет сквозные мелкие дефекты в изоляционном покрытии в небольшом количестве площадью до

на каждом квадратном метре поверхности трубопровода.

Рис.3.1а Фрагмент интегральных величин сопротивлений изоляционного покрытия на интервалах участка трубопровода А-С, определенных по таблицам (или номограммам) для частоты сигнала 3,1 Гц и для диаметра трубопровода DT = 1220 мм

Рис.3.1б Фрагмент интегральных величин площадей дефектов в покрытии на интервалах участка трубопровода А-С

Графики интегральных величин сопротивления и интегральных величин площади оголения металла трубопровода показаны на рис.3.2а и 3.2б. Из рассмотрения результатов этих интервалов видно, что наибольшая интегральная величина площади дефектов находится на интервале между точками измерений D и Е. На этом интервале необходимо провести дополнительные измерения с шагом 10 м для уточнения места дефекта, начиная от точки D, а результаты запишем в таблицу 3.3.

Таблица 3.3

Измеренные напряжения на интервале D-E

Кол-во измерений

Измеренные величины в точках, мВ

Ud

U1

U2

U3

U4

U5

U6

U7

U8

1

170

175

175

140

125

125

125

120

125

2

'>

Документ сокращен, так как он очень большой. Для просмотра полной версии этого документа пройдите по ссылке Бесплатный заказ нужного документа

 
< Пред.   След. >
Полезное: