Проектирование и строительство нормативно-методические документы arrow Автодороги arrow Рекомендации Рекомендации по производству опережающих исследований для строительства в районах расп  
25.09.2018
    
Рекомендации Рекомендации по производству опережающих исследований для строительства в районах расп

ПРОИЗВОДСТВЕННЫЙ
И НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ
ПО ИНЖЕНЕРНЫМ ИЗЫСКАНИЯМ В СТРОИТЕЛЬСТВЕ
(ПНИИИС) ГОССТРОЯ СССР

РЕКОМЕНДАЦИИ
ПО ПРОИЗВОДСТВУ ОПЕРЕЖАЮЩИХ ИССЛЕДОВАНИЙ
ДЛЯ СТРОИТЕЛЬСТВА В РАЙОНАХ РАСПРОСТРАНЕНИЯ
ВЕЧНОМЕРЗЛЫХ ГРУНТОВ

Москва
Стройиздат 1986

Рекомендованы к изданию решением геокриологической секции Научно-технического совета ПНИИИС Госстроя СССР.

Рассмотрены требования инженерно-геокриологическим исследованиям для обоснования вариантов расположения объектов строительства неглубокого заложения (в первую очередь трасс трубопроводов), сравнения этих вариантов между собой и выбора оптимального из них. Рекомендации достаточны для исследований в неосвоенных и сложных в инженерно-геокриологическом отношении равнинных территориях.

Для инженерно-технических работников проектно-изыскательских и строительных организаций.

ПРЕДИСЛОВИЕ

Рекомендации по производству опережающих (предстадийных) исследований для строительства в районах распространения вечномерзлых грунтов учитывают требования действующих нормативных документов СНиП II-9-78 и РСН 36-70, касающихся проведения инженерно-геологических изысканий в районах распространения вечномерзлых грунтов. Рекомендации разработаны впервые в соответствии с решением Секции инженерных изысканий в строительстве и Секции строительства в условиях сурового климата и вечномерзлых грунтов НТС Госстроя СССР и планом научно-исследовательских работ ПНИИИС.

Практика изысканий для строительства, осуществляемых по действующим нормативным документам, не обеспечивает требований к выбору оптимальных по инженерно-геокриологическим условиям территорий и трасс большой протяженности в условиях Крайнего Севера и Сибири, где отсутствует государственная инженерно-геологическая средне- и мелкомасштабная съемка. Опыт показывает, что инженерно-геологические мелко- и среднемасштабные исследования для обоснования строительства традиционно выполняются только при проектировании гидротехнических сооружений. Проектирование промышленно-гражданского строительства, магистральных трубопроводов, обустройства нефтяных и газовых месторождений в необжитых районах Севера и Сибири опережающими инженерно-геологическими исследованиями не обеспечено или обеспечено в недостаточном объеме, что затрудняет аргументацию выбора оптимальных решений при обоснованиях строительства и оценку возможных изменений природных условий в процессе строительства и эксплуатации сооружения. В такой ситуации даже опытный проектировщик не в состоянии выбрать оптимальную по приведенным затратам строительную площадку или трассу. В то же время по опыту институтов ПНИИИС Госстроя СССР, Гипроспецгаз и ЮЖНИИгипрогаз Мингазпрома, выполнявших изыскания и проектирование газопроводных систем из Западной Сибири в Центр, экономическая эффективность учета информации, получаемой при опережающих исследованиях, по расчетам С.Е. Гречищева (ВСЕГИНГЕО) составляет 100 - 200 тыс. руб. на 1 км трассы в год.

Основой Рекомендаций послужили выполненные институтами ПНИИИС и ЮЖНИИгипрогаз инженерно-геокриологические исследования для сравнения вариантов и выбора оптимальных вариантов расположения трасс магистральных нефте- и газопроводов, построенных и проектируемых в Западной Сибири (Уренгой - Сургут, Уренгой - Ужгород, Ямбург - Центр, Ямал - Центр, Медвежье - Надым - Пунга), а также для обоснования и планирования обустройства Ямбургского, Вынгапуровского, Харасовэйского, Бованенковского и Нейтинского газовых месторождений. При подготовке Рекомендаций учтены региональные и зональные различия инженерно-геокриологических условий, которые обусловливают особые требования к производству инженерных изысканий. В связи с этим содержание, объемы, виды работ и специфика их проведения на этом этапе исследований даются с учетом различий инженерно-геокриологических условий применительно к основным типам мерзлых толщ равнинных территорий: I - эпигенетическим высокотемпературным (условно выше минус 2 °С) и пластичномерзлым грунтам; II - низкотемпературным (условно ниже минус 2 °С), преимущественно эпигенетическим мерзлым грунтам с крупными залежами пластовых льдов и III - низкотемпературным сильнольдистым, преимущественно сингенетическим мерзлым грунтам с мощными повторно-жильными льдами.

Рекомендации разработали кандидаты геол.-мин. наук Дубиков Г.И., Кузнецова И.Л. Пармузин О.Ю., Стремяков А.Я., Чернядьев В. П. и канд. геогр. наук Белопухова Е.Б., Каплина Т.Н. (ПНИИИС Госстроя СССР) при участии канд. геол.-мин. наук Гаврилова А.В. (МГУ), Крицук Л.Н. и Мельникова Е.С. (ВСЕГИНГЕО Мингео СССР), канд. геогр. наук Ивановой Т.Ф., Даниловой Н.С., Суходольского С.Е., инженеров Дорофеева Е.А., Клишес Т.М., Красовского А.Г., Лахтиной О.В., Пакулина В.А. (ПНИИИС Госстроя СССР) и Махонина Г.И. (ЮжНИИгипрогаз Мингазпрома).

Под редакцией д-ра геол.-мин. наук В.В. Баулина.

Замечания и пожелания просим направлять по адресу: 105058, Москва, Окружной проезд, 18, ПНИИИС Госстроя СССР.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Настоящие Рекомендации предусматривают производство опережающих инженерно-геокриологических исследований, предшествующих этапу проектирования строительства, и получение информации, достаточной для составлений технико-экономического обоснования размещения объектов неглубокого заложения и выбора способа строительства, в первую очередь трасс газо- и нефтепроводов в неизученных районах Севера и Сибири, характеризующихся сложными природными условиями.

1.2. Состав, содержание и последовательность инженерно-геокриологических исследований рассматриваются применительно к осваиваемым равнинным территориям области распространения многолетнемерзлых грунтов - Европейского Севера, Западной Сибири и Приморских низменностей на северо-востоке страны.

1.3. Применяемый в Рекомендациях методический подход, учитывающий специфику геокриологических условий в районах распространения основных выделенных типов мерзлых толщ, может быть применен при подобных исследованиях на всей равнинной территории северной зоны страны, занятой мерзлыми грунтами.

2. ЭТАПЫ ИССЛЕДОВАНИЙ

Опережающие инженерно-геокриологические исследования проводятся в три этапа: предполевой (подготовительный), полевой и камеральный. В табл. 1 приводится перечень характеристик, которые необходимо получить для инженерно-геокриологической оценки природной обстановки, прогноза ее изменения и принятия технических решений на этом этапе исследований.

Таблица 1

Характеристика

Источник информации

Рельеф. Глубина и частота эрозионного расчленения. Уклоны поверхности. Абсолютные отметки

Анализ топографических карт, аэрофотоматериалов, наземные наблюдения

Гидрография. Речная сеть, озера, их глубина, площадь, степень заозеренности. Заболоченность территории, тип болот

Анализ топографических и других карт, аэрофотоматериалов, измерения в поле

Химизм поверхностных вод и их агрессивность

Отбор проб и их химический анализ

Климатические характеристики.

Температура воздуха (среднегодовая и среднемесячная), количество осадков, высота снежного покрова и распределение по площади, плотность снега; даты установления и схода снега; ветер, его направление и скорость

Климатологические справочники

Растительность. Тип растительности. Для древесной - состав, подлесок, сомкнутость крон; для кустарниковой - состав и высота; для напочвенного покрова - состав, мощность, степень покрытия

Анализ аэрофотоматериалов, геоботанические карты, маршрутные исследования

Геоморфологическое строение. Типы рельефа, генезис и возраст

Анализ топографических, геоморфологических карт, дешифрирование аэрофотоснимков

Геологическое строение. Геолого-структурное положение, направление неотектонического развития

Анализ геологических карт, маршрутные исследования, описание обнажений, анализ аэрофотоснимков

Состав поверхностных отложений, их возраст, генезис, мощность

Бурение скважин, проходка шурфов, геофизические исследования, изучение обнажений

Гидрогеологические условия. Грунтовые воды, состав, водообильность, агрессивность

Описание естественных источников, наблюдения в скважинах, отбор проб и их анализ

Геокриологические условия. Распространение вечномерзлых и талых грунтов, соотношение вечномерзлых и талых грунтов по площади. Мощность вечномерзлых грунтов

Ландшафтно-индикационные наблюдения, бурение, электропрофилирование, дешифрирование аэрофотоматериалов. Бурение скважин, вертикальное электрозондирование

Талики, их типы и мощность

Бурение скважин, вертикальное зондирование, радиолокационное зондирование

Состав и мощность сезоннопротаивающих и сезоннопромерзающих грунтов

Шурфы, зондирование щупом, расчетные методы

Температура грунтов

Измерения температуры в скважинах, расчетные методы

Мощность слоя годовых колебаний температуры в грунтах

Расчетный способ, анализ кривой изменения температуры по глубине

Льдистость и криогенное строение грунтов

Осмотр обнажений, описание керна скважин и стенок шурфов

Физико-геологические образования

Маршрутные исследования и

Термокарст

дешифрирование аэрофотоматериалов (для всех типов образований)

Подземные льды (повторно-жильные и пластовые)

Изучение обнажений, шурфов и керна скважин, геофизические работы

Пучинные (бугры, гряды)

Бурение скважин

Солифлюкционные

Бурение, шурфы

Наледи

Гидрологические наблюдения

Термоэрозионные и эрозионные

Анализ топографических карт, аэрофотоматериалов разных лет

Свойства грунтов

Лабораторные работы

2.1. Основной задачей исследований в предполевой (подготовительный) этап является предварительная оценка геокриологических условий в результате анализа уже имеющихся материалов, которая послужит обоснованием выбора перспективных направлений трассы и благоприятных для строительства участков.

В предполевой период анализируют и дешифрируют топографические карты и аэрофотоматериалы, знакомятся с фондовыми и опубликованными источниками информации, составляют предварительные представления о геокриологических условиях, выбирают ключевые участки, намечают направления маршрутов аэровизуальных наблюдений и объемы работ.

В процессе исследований используют топографические карты масштабов 1:300000 - 1:25000 для обзора района работ, проведения аэровизуальных наблюдений и составления отчетных инженерно-геокриологических карт на весь район и на ключевые участки. Аэрофотоматериалы необходимо иметь на весь район в масштабе 1:60000 и ключевые участки в масштабе не менее 1:25000.

В этот период собирают сведения о составе поверхностных отложений, рельефе, растительном покрове, заболоченности и заторфованности территории. На топографических картах проводят границы геоморфологических уровней.

Особое внимание обращают на сбор материалов по распространению вечномерзлых грунтов, их мощности, температуре, составу, криогенному строению, глубине сезонного протаивания и промерзания грунтов, физико-геологическим процессам и образованиям. Большую информацию дает предварительное дешифрирование аэрофотоматериалов; с их помощью выделяются природно-территориальные комплексы, четко различающиеся на аэрофотоснимках: залесенные участки, безлесные участки (тундровые и торфяники), обводненные болота, бугристые участки (сочетания бугров и заболоченных понижений) и крупные котловины. С помощью аэрофотоматериалов устанавливают состав отложений и их генетическую принадлежность, дают ориентировочную оценку распространения мерзлых и талых грунтов с поверхности, их льдистости.

При сборе материалов о температуре грунтов, глубинах их сезонного протаивания и промерзания, развивающихся процессах (термокарст, растущие жилы льда, новообразования мерзлых грунтов) фиксируются поверхностные условия для установления влияния отдельных природных факторов на геокриологические условия, а также время проведения наблюдений для последующего выявления степени их изменчивости.

Собранный материал анализируют и привязывают к намеченным геоморфологическим уровням и выделенным ландшафтам, что позволяет выявить изменчивость геокриологических характеристик.

В итоге должна быть составлена схема геокриологического районирования территории, по которой в первом приближении можно получить характеристику ее пригодности для строительства. Эту схему, наряду с предварительной ландшафтной картой, используют для выбора ключевых участков и направлений залетов при аэровизуальных наблюдениях.

Инженерно-геокриологические исследования на ключевых участках проводятся в масштабе 1:25000, позволяющем устанавливать взаимосвязь поверхностных и геокриологических условий. Материалы съемки на ключевых участках в дальнейшем используют при изысканиях.

Ключевые участки намечают таким образом, чтобы в итоге инженерно-геокриологической съемки были охарактеризованы все геоморфологические уровни, а в их пределах все основные природно-территориальные комплексы.

Площадь ключевого участка определяется сложностью геокриологической обстановки и транспортными возможностями и из опыта съемочных работ ПНИИИС составляет 30 - 100 км2. Общая площадь ключевых участков на территории со сравнительно однородными природными условиями должна составлять примерно пятую часть картируемой площади.

В районах распространения эпигенетически мерзлых льдистых грунтов, характеризующихся засоленностью и содержанием мощных залежей пластовых льдов, а также в районах труднопроходимых болот северной тайги ключевые участки должны составлять не менее 1/3 площади съемки.

2.2. В полевой период выполняют основные работы по инженерно-геокриологической съемке, на основе которой избирают оптимальное направление трассы линейных сооружений, определяют рациональное размещение строительных объектов и намечают проектные решения. Так как съемку проводят с применением ландшафтно-индикационного метода, то полевые работы выполняют только в теплый (бесснежный) период.

Полевые работы начинают с аэровизуального обследования территории (полосы трассы), в ходе которого уточняют местоположение ключевых участков. При производстве аэровизуальных работ используют космические снимки, отличающиеся большим обзором. Основную часть времени полевого периода используют для инженерно-геокриологической съемки ключевых участков.

В процессе съемки определяют: распространение и мощность вечномерзлых грунтов, состав, криогенное строение, льдистость и физические характеристики грунтов; температуру талых и вечномерзлых грунтов; глубины сезонного протаивания и промерзания грунтов; проявление, залегание, режим и химический состав грунтовых вод; физико-геологические явления.

Перечисленные характеристики получают в маршрутах, в процессе горнобуровых и геофизических работ, термометрических наблюдений, полевых лабораторных определений.

Маршрутные исследования, дают возможность оценить общую инженерно-геокриологическую обстановку района работ, наметить опорные профили и места заложения скважин за пределами профилей. При исследованиях под магистральные трубопроводы основной профиль задается по намечаемой оси сооружения; остальные (2 - 3 профиля) задаются так, чтобы пересечь основные элементы рельефа и наибольшее число типов природно-территориальных комплексов.

По профилям проводится электропрофилирование, которое сопровождается описанием поверхностных условий и измерением глубин сезонного протаивания грунтов. По результатам электропрофилирования закладываются скважины и точки вертикального электрозондирования (ВЭЗ), которые располагаются на типичных отрезках профиля и в местах аномалий.

Буровые работы выполняют по намеченным профилям и за их пределами. Разрезы всех скважин документируют: отбирают монолиты и образцы для определения характеристик грунтов.

На протяжении всего полевого периода ведут дешифрирование аэрофото- и космоснимков, выявляют индикаторы геокриологических характеристик и устанавливают их дешифровочные признаки. Все точки наземных наблюдений и границы выделенных природно-территориальных комплексов наносят на снимки.

В скважинах проводят измерения температуры грунтов, а при наличии водоносного горизонта - наблюдения за уровнем грунтовых вод и отбирают пробы на анализы.

В конце работ на каждом ключевом участке проводят предварительную обработку полученных материалов, в результате которой представляют: а) колонки скважин с кривыми распределения плотности, влажности (льдистости) и температуры грунтов; б) графики электропрофилирования; в) кривые ВЭЗ с предварительной интерпретацией; г) отдешифрированные снимки; д) ландшафтно-индикационные таблицы.

На этом же этапе выбирают, обосновывают и оборудуют пункты для стационарных наблюдений за тепловым режимом грунтов, динамикой процессов, режимом уровня грунтовых вод и др.

2.3. Камеральный этап заключается в подготовке и выдаче материалов, необходимых для окончательного выбора направления трассы, размещения строительных площадок и обоснования метода использования грунтов в качестве основания сооружений. На этом этапе рассчитывают некоторые физико-механические характеристики грунтов, максимальные глубины сезонного протаивания и промерзания грунтов для основных литологических типов грунтов; проводят статистическую обработку результатов определения характеристик грунтов; окончательно интерпретируют геофизические данные; составляют инженерно-геокриологические карты на ключевые участки; окончательно дешифрируют аэрофотоснимки и составляют ландшафтную карту на всю территорию работ; составляют: инженерно-геокриологическую карту и инженерно-геокриологический разрез; общий прогноз изменения инженерно-геокриологических условий в результате хозяйственного освоения территории и текст отчета.

Заключительный этап завершается выбором территории, пригодной по инженерно-геокриологическим условиям для строительства.

3. ОСНОВНЫЕ ВИДЫ РАБОТ

3.1. Дешифрирование аэрофотоматериалов и космоснимков широко используется для изучения инженерно-геокриологических условий, поскольку существуют тесные взаимосвязи между геокриологическими характеристиками и комплексом поверхностных условий. Поэтому обязательной частью инженерно-геокриологических исследований является составление по аэрофотоматериалам ландшафтной карты или карты природных микрорайонов, которая служит основой инженерно-геокриологической карты.

Для выделения на этой карте природно-территориальных комплексов (микрорайонов) устанавливают закономерности пространственной изменчивости природных факторов, которые определяют геокриологические условия (растительность, рельеф, состав поверхностных отложений и др.). Комплекс поверхностных природных факторов находит отражение в структуре аэрофотоизображений или космических снимков.

Аэрофотоснимки применяются на всех этапах исследований и методика их использования достаточно отработана. Космические снимки еще не нашли такого широкого применения.

Для получения общих представлений о районе исследований рекомендуется использовать мелкомасштабные космические снимки. На подготовительном этапе они могут служить как источником информации, так и основой для анализа и обобщения имеющихся материалов. При оценке заозеренности, заболоченности и залесенности территории роль этих снимков определяющая.

На атом же этапе рекомендуется применять и локальные космические снимки высокого разрешения, характеризующиеся высокой обзорностью (охват одним снимком 3,5 - 4 тыс. км2 и более) и идентичностью изображения однотипных природных объектов на больших площадях. Эти свойства космических снимков способствуют значительному ускорению дешифрирования и повышают его достоверность. Предпочтительное использование наиболее информативных синтезированных многозональных (красная или зеленая зона + инфракрасная зона) или спектрозональных космоснимков. Учитывая недостаточную обеспеченность ими территории с вечномерзлыми грунтами, допустимо употребление черно-белых космических снимков. Целесообразно применение локальных космических снимков также непосредственно для трассирования, так как один снимок охватывает территорию с листом топографической карты масштаба 1:200000.

В полевой период основными материалами для дешифрирования являются аэрофотоснимки. К ландшафтной карте обязательно прилагается ландшафтно-индикационная таблица, позволяющая расшифровать геокриологические условия выделенных природных комплексов.

3.2. Горно-буровые работы служат одним из основных средств получения информации об инженерно-геокриологических характеристиках территории. Для изучения вечномерзлых грунтов бурение скважин производится без промывки с полным отбором керна. Керноотборниками служат специальные наконечники, обеспечивающие сохранность керна в мерзлом состоянии. В том случае, когда скважина задается только для изучения температуры грунтов, бурение может производиться с нарушением сложения мерзлых грунтов.

При исследованиях для линейных сооружений рекомендуется бурение опорных скважин до подошвы слоя с годовыми колебаниями температуры в основном глубиной 10 - 15 м и зондировочных глубиной 3 - 5 м. Бурение опорных скважин производится для определения состава, криогенного строения, льдистости, температурного режима грунтов. При бурении термометрических скважин необходимо избегать нарушений поверхностных условий, иначе при повторных измерениях температуры получаются искаженные результаты.

Бурением также устанавливается мощность вечномерзлых грунтов в районах островного их распространения при неглубоком залегании подстилающих талых грунтов, а также мощность таликовых зон, заранее установленных геофизическими работами.

Зондировочное бурение применяется для определения состава и льдистости верхнего льдонасыщенного горизонта грунтов; мощности, состава и льдистости торфа на торфяниках; состояния грунтов на торфяниках с островным или массивно-островным распространением вечномерзлых грунтов; ориентировочной глубины проникновения ледяных жил, мощности льдистого ядра в буграх пучения, глубины залегания кровли пластовых льдов; глубины сезонного протаивания и промерзания грунтов; глубины залегания, водообильности и состава грунтовых вод.

Количество основных и зондировочных скважин на каждом ключевом участке определяется пестротой геокриологических условий: в среднем на ключевом участке для каждого выделенного типа ландшафта должны приходиться 1 - 2 скважины глубиной 10 - 15 м. Число зондировочных скважин определяется сложностью геокриологических условий. В районах прерывистого распространения вечномерзлых грунтов количество зондировочных скважин на ключевом участке должно быть значительно больше, чем в районах со сплошным их распространением. Шурфы проходятся по возможности около каждой термометрической скважины для определения состава и водно-физических свойств грунтов сезонно-талого или сезонно-мерзлого слоя, а также для установления стадии развития и размеров ледяных жил, размеров псевдоморфоз по повторно-жильным льдам, следов проявления склоновых и других процессов, водообильности надмерзлотных вод. Расчистка обнажений пород по берегам рек, озер, на морском побережье используется для изучения криогенного строения, льдистости отложений, их фациальной изменчивости, криогенных явлений, образований и др., что существенно дополняет данные бурения и шурфовочных работ.

3.3. Термометрические наблюдения. Для измерения температуры грунтов в скважинах применяются психрометрические термометры с ценой деления 0,2 °, упакованные в металлические или пластмассовые футляры с прорезью против шкалы. Для придания термометрам тепловой инерции термометры «заленивливаются», т.е. ртутные шарики их заделываются в малотеплопроводный материал. Длительность выстойки таких термометров с тепловой инерцией в 1 - 2 мин составляет 1 - 2 ч.

В районах распространения высокотемпературных и пластично-мерзлых грунтов температура в скважинах измеряется на глубинах 0,5; 1; 1,5; 2; 2,5; 3 м и далее через 1 м; для грунтов с температурой ниже минус 3 °С интервал измерений рекомендуется постоянным в 1 м по всей скважине.

Рекомендуются расчетные методы определения средней годовой температуры грунтов, позволяющие оценить влияние на ее формирование различных природных факторов. Расчетные температуры пород сравниваются с натурными данными, и в случае хорошего их совпадения выбранная расчетная схема применяется при съемке.

Наиболее широко расчетные методы определения средних годовых температур грунтов должны применяться в зоне распространения мерзлых грунтов с низкими температурами, что может значительно сократить объемы бурения термометрических скважин.

В районах с высокими отрицательными температурами грунтов применение расчетных методов определения их среднегодовой температуры ограничено, так как точность методов сопоставима с фактическими температурами грунтов.

Для дистанционных измерений температуры рекомендуется использование термоэлектрических термометров (термопар) и терморезисторов (термометры сопротивления). Из термоэлектрических термометров наиболее распространены медь-константановые термопары, которые достаточно стабильны при длительном применении, но отличаются невысокой чувствительностью и погрешностями.

Металлические проволочные терморезисторы (термометры сопротивления) наиболее полно удовлетворяют метрологическим требованиям к стабильности, взаимозаменяемости, долговечности и устойчивости относительно внешних воздействий при эксплуатации.

Большие требования предъявляются к состоянию скважин для термометрических наблюдений. Ориентировочное время выстойки пробуренных скважин перед измерением в них температуры грунтов в зависимости от метода бурения и характеристик вечномерзлых грунтов дается по B.C. Мелентьеву в табл. 2.

Таблица 2

Состав вечно-мерзлых грунтов

Температура пород до бурения

Методы бурения

Температура воздуха в момент бурения

Время выстаивания скважин после бурения (в долях от продолжительности бурения)

Сильнольдистые, нескальные

Ниже минус 4° С

Ударно-канатное и колонковое с продувкой

От +5 до -5

От +10 до +25

0,5

То же

От -10 до -2

1

колонковое с промывкой

От +5 до -5

 

От -10 до -2

1

То же

От +10 до +2

1,5 - 2

Слабольдистые, нескальные, скальные

То же

Ударно-канатное и колонковое с продувкой

От +5 до -5

От +10 до +25

От -10 до -25

1

Колонковое с промывкой

От +5 до -5

 

От -10 до -25

2 - 2,5

От +10 до +25

3,5 - 4

Сильнольдистые

Ниже 0 °, но выше минус 4 °С

Ударно-канатное и колонковое

От +5 до -5

От +10 до +25

1

с продувкой

От -10 до -25

1 - 1,5

колонковое с продувкой

От +5 до -5

 

От -10 до -25

2 - 2,5

От +10 до +25

2,5 - 3,5

Слабольдистые

Ниже 0 °, но выше минус 4 °С

Ударно-канатное и колонковое с продувкой

От +5 до +25

От +10 до +25

1 - 1,5

От -10 до -25

2 - 2,5

От +5 до -5

 

колонковое с промывкой

От -10 до -25

3 - 3,5

То же

От +10 до +25

5 - 6

Для стационарных термометрических наблюдений рекомендуются медные термометры сопротивления II класса. Контрольные и переносные комплекты целесообразно изготовлять из платиновых чувствительных элементов.

В качестве измерительной аппаратуры рекомендуются мосты типа МО-62 (УПИП-60М) или близкие к ним по характеристикам. Из нестандартной аппаратуры можно рекомендовать приборы, разработанные в ПНИИИС: электротермометр (ЭТС-1) и мосты постоянного тока (МО-21/10 и МО-40-10).

3.4. Геофизические работы. Широкое применение получила электроразведка на постоянном токе, методика и способы интерпретации результатов которой хорошо разработаны. При изучении разрезов, сложенных вечномерзлыми и талыми грунтами, используется стандартная аппаратура (АЭ-72, ЭСК-1).

Электроразведка на постоянном токе подразделяется на электропрофилирование (ЭП), вертикальное электрозондирование (ВЭЗ) и электрический каротаж.

Электропрофилирование рекомендуется применять для выявления неоднородностей геоэлектрического разреза в плане, для определения распространения вечномерзлых грунтов, оконтуривания таликов, оконтуривания участков с различной глубиной протаивания и различной льдистостью, выявления пластовых и повторно-жильных льдов, выявления контактов грунтов различного состава.

Максимальная глубина исследования при ЭП оценивается по приближенной формуле

где L - расстояние между центром приемной линии и питающим электродом; h - глубина погружения верхней границы объекта с измененным удельным электрическим сопротивлением (УЭС), размеры которого в плане превышают 2L.

Для изучения разреза на глубину 10 - 15 м целесообразно применять установку с L = 20 - 30 м. Излишнее увеличение разносов не рекомендуется, так как оно снижает разрешающую способность профилирования при частом изменении геоэлектрического разреза по профилю.

Результаты электропрофилирования представляются в виде графиков, на которых по оси абсцисс откладываются расстояния по профилю, а по оси ординат - величина rк для обоих разносов. В результате интерпретации результатов электропрофилирования выделяются зоны с повышенным или пониженным значением rк. При точечном профилировании графики rк получаются произвольно осредненными, со сглаженными или искаженными экстремумами над контактами, поэтому положение контактов устанавливается по некоторой величине rк, которая для каждого участка определяется экспериментально.

Сопоставление графиков rк на большом и малом разносах помогает при разделении аномалий, вызванных неоднородности поверхностных условий, и аномалий от более глубоких объектов. По разнице значений rк на больших и малых разносах можно предположительно, судить о строении геоэлектрического разреза. Для облегчения интерпретации на графики rк наносятся типы ландшафтов и глубина сезонного протаивания грунтов. Для достоверности интерпретации графиков и для составления геокриологического разреза привлекаются материалы ВЭЗ и бурения опорных скважин.

При необходимости детализации отдельных объектов рекомендуется применять непрерывное электропрофилирование методом rк (с шагом изменения, не превышающим длину измерительной линии MN) или электропрофилирование двух составляющих.

Вертикальное электрическое зондирование (ВЭЗ) применяется:

для определения глубины залегания верхней и нижней границ вечномерзлых грунтов;

для выделения в разрезе слоев грунтов различного литологического состава в мерзлом и талом состоянии и оценки их мощности;

для выявления изменения характеристик мерзлой толщи по вертикали, в частности для выделения верхнего горизонта грунтов с повышенной льдистостью.

Чтобы выявить неоднородности в верхней части разреза (до 10 - 15 м) рекомендуются разносы АВ до 100 - 200 м в зависимости от типа разреза. Следует выбирать места ВЭЗ в середине однородных участков, чтобы при максимальных разносах питающей линии не пересекать границы этих участков и можно было осуществить стандартное зондирование симметричной 4-электродной установкой АМВ. Если однородный участок для этого мал, выполняется 3-электродное ВЭЗ по схеме АМНВ®¥ так, чтобы разнос ОА находился в однородных условиях. Если же питающая линия будет пересекать границу однородной зоны, а также на участках с резко меняющимися приповерхностными условиями (например, на мерзлых торфяниках с большим количеством заболоченных понижений с увеличенной мощностью сезонно-талого слоя) применяется двустороннее трехэлектродное зондирование (АМНС®¥ ВМNС®¥) с измерением по методу двух составляющих (МДС).

При расположении нескольких ВЭЗ с интервалом, меньшим АВ, целесообразно все их ориентировать по линии профиля. Это облегчает учет вертикальных неоднородностей.

Интерпретация результатов ВЭЗ осуществляется в несколько этапов. На первом этапе производится отработка кривых, искаженных негоризонтальными границами раздела. На следующем этапе производится количественная интерпретация результатов ВЭЗ, заключающихся в определении УЭС и мощностей слоев разреза. Кривые rк интерпретируются стандартными методами с помощью палеток, вычисленных при построенных эталонных кривых. Точность интерпретации высока и вполне пригодна для практических целей, если известны заранее УЭС или мощность промежуточных горизонтов (например, с помощью бурения). При отсутствии этих данных определить эта параметры точно нельзя из-за действия принципа эквивалентности разрезов. В этом случае оцениваются только возможные пределы изменения этих параметров.

Форма представления результатов количественной интерпретации кривых ВЭЗ rк зависит от расположения точек ВЭЗ на местности. Если точки ВЭЗ расположены далеко друг от друга по профилю, то результаты интерпретаций представляются в виде колонок, на которых показывают глубину залегания каждого слоя и обозначают его УЭС. В большинстве случаев результаты интерпретации ВЭЗ rк представляются в виде геоэлектрических разрезов по профилям. Результаты интерпретации ВЭЗ МДС всегда представляются в виде геоэлектрического разреза. На этих разрезах в заданном масштабе проводят границы слоев, обладающих близкими значениями УЭС. При опережающих исследованиях по каждому ключевому участку строится рабочий геоэлектрический разрез в масштабах: горизонтальном 1:5000 или 1:10000 и вертикальном 1:200 или 1:500. Отчетный геоэлектрический разрез совмещается с геологическим или строится отдельно.

Последним этапом интерпретации электроразведочных работ является геокриологическая интерпретация геоэлектрического разреза. Она проводится на основании совместного анализа всех имеющихся по району материалов о геологическом строении и электрических свойствах грунтов в талом и мерзлом состоянии для установления природы каждого выделенного геоэлектрического горизонта.

3.5. Стационарные режимные наблюдения на стадии опережающих исследований организуются на выбранных в процессе инженерно-геокриологической съемки экспериментальных площадках для комплексного исследования и количественной оценки роли природных факторов в формировании теплового режима грунтов и динамики развития основных криогенных процессов. Стационарные режимные наблюдения должны быть продолжены на последующих стадиях проектирования и при необходимости в строительный период (СНиП II-9-78, п. 3.33). Продолжительность этих наблюдений должна быть не менее года, они организуются и выполняются специализированными организациями. Стационарные наблюдения должны включать:

общие метеорологические и теплобалансовые наблюдения (выполняются, если в районе освоения или вблизи нет метеостанций);

тепловые измерения (температура и теплопотоки) в грунтах, растительном и снежном покровах;

наблюдения за высотой снежного покрова, плотностью и структурой снега;

наблюдения за динамикой развития криогенных процессов. Методика проведения метеорологических и теплобалансовых наблюдений разработана в Гидрометслужбе СССР. Для этих целей используется стационарная аппаратура, позволяющая осуществлять непрерывную и периодическую запись. Для получения среднесуточных данных при периодической записи используются стандартные сроки: 030, 630, 930, 1230, 1530 и 1830.

Тепловые измерения в грунте, растительном и снежном покровах осуществляются с помощью датчиков. Для измерения температуры грунтов рекомендуется использовать термометры сопротивления, а температура поверхности измеряется «термопауком», в котором датчиком служат термопары или термометры сопротивления.

Датчики устанавливаются по глубине до подошвы слоя годовых колебаний температуры. Во избежание конвекции после установки датчиков скважины засыпаются песком. Интервал между датчиками в верхнем слое определяется глубиной сезонного протаивания или промерзания грунта и не должен превышать 0,1 - 0,5 м; ниже глубины сезонного промерзания-протаивания интервал увеличивается до 0,5 - 2,5 м. Для того чтобы не произошло искажения температурного поля из-за большого количества датчиков и подводящих проводов, установку датчиков осуществляют не менее чем в двух скважинах, расположенных рядом.

Сроки измерения температуры зависят от глубины расположения датчиков, глубины сезонного протаивания и промерзания грунтов, хода снегонакопления и наличия растительных напочвенных покровов. В слое с суточными колебаниями температуры наблюдения выполняются 4 или 6 раз за сутки. С глубины более 2 м измерения рекомендуется проводить раз в 5 дней.

В снежном и растительном покровах термодатчики устанавливаются с интервалом не более 0,1 м. В напочвенных покровах незначительной мощности датчики устанавливаются на верхней и нижней их поверхностях.

Теплопоток через поверхность грунта и покровы измеряется тепломерами специального изготовления. Тепломеры устанавливаются над покровом и на поверхности грунта. Теплофизические характеристики растительного и снежного покровов определяются только при установившемся температурном режиме.

Измерение температуры и теплопотоков осуществляется дистанционно специальной коммутационной и измерительной аппаратурой АСИ-500-1, разработанной в ПНИИИС и работающей в ручном, автоматизированном и автоматическом режимах.

Измерения влажности грунтов на всех площадках и точках наблюдений ведутся в течение годового цикла с интервалом от 15 до 30 дней. В начале и конце промерзания пробы грунтов на влажность берутся из шурфов, а в процессе промерзания и протаивания точечный отбор проб осуществляется с помощью зондировочного бурения скважин на глубину слоя сезонного промерзания-протаивания грунта. Наблюдения за сезонным промерзанием и протаиванием грунтов осуществляются мерзлотомерами Данилина, Ротомского и зондировочным бурением. При промерзании мелкодисперсных грунтов более достоверные данные о глубине промерзания можно получить по мерзлотомеру Ротомского. Глубина протаивания (при глубине не более 1 м) определяется металлическим щупом.

Наблюдения за изменением высоты снежного покрова ведутся по снегомерным рейкам. Высота снежного покрова фиксируется ежедневно. Плотность снега определяется весовым снегомером (ВС43) 1 - 2 раза в декаду в зависимости от скорости снегонакопления и ветрового режима. Наблюдения за строением снега проводятся 1 - 2 раза в месяц в шурфе, в стороне от площадки в идентичных условиях. При значительном перераспределении снежного покрова по территории проводится снегомерная съемка по заранее намеченным профилям. Эпизодические наблюдения за высотой снежного покрова и плотности снега по профилям должны быть не реже 1 раза в месяц.

Организуются наблюдения за динамикой развития ведущих криогенных процессов осваиваемой территории.

Наблюдения за термокарстом организуются для изучения факторов, способствующих развитию термокарста и стабилизирующих его для определения влияния просадочных образований на тепловое состояние грунтов на участках, затронутых термокарстом и для получения исходных данных, необходимых при создании статистических и математических моделей развития термокарста.

Наблюдения за развитием термокарста проводятся на участках с льдистыми и сильнольдистыми грунтами. Для проведения наблюдений необходимо создать искусственные условия, катализирующие развитие термокарста в начальной стадии. Для этого организуются площадки с различной степенью нарушения поверхностных условий (уничтожение растительного покрова, создание выемки глубиной от 20 до 50 см в зависимости от глубины сезонного протаивания грунтов).

В состав наблюдений за динамикой развития термокарста включаются:

наблюдения за температурным режимом грунтов в скважинах глубиной 10 - 15 м на экспериментальных площадках и за их пределами;

наблюдения за изменением во времени глубины сезонного протаивания грунтов;

наблюдения за влажностью сезоннопротаивающих грунтов;

систематические наблюдения за увлажненностью площадок, определение коэффициента фильтрации грунтов;

наблюдения за скоростью отступления термоабразионных уступов и переносом дисперсного материала по акватории термокарстовых озер.

На каждой площадке изучается геологическое и криогенное строение грунтов до глубины 10 - 15 м, определяются физические и теплофизические характеристики вечномерзлых и талых грунтов, их просадочность при протаивании, деформация дневной поверхности в пределах опытных площадок путем повторного высокоточного нивелирования специальных марок.

Рекомендуемый комплекс наблюдений позволяет выявить потенциальную возможность просадочных процессов, прогнозировать их развитие и разрабатывать мероприятия по борьбе с их влиянием.

Для наблюдений за пучением промерзающих грунтов выбираются площадки с мелкодисперсными грунтами. На каждой из площадок в течение периода промерзания грунтов проводится следующий комплекс наблюдений и исследований:

подробно изучается геологическое строение площадки;

определяется гранулометрический, минеральный состав и состав обменных катионов грунтов;

проводятся наблюдения за влажностью и плотностью грунтов в процессе промерзания, за изменением уровня грунтовых вод;

- выполняются наблюдения за скоростью и глубиной промерзания, а также температурным режимом промерзающих грунтов;

 в лабораторных условиях исследуется компрессионная усадка грунта при кристаллизации свободной воды, определяются плотность, пористость, предзимняя влажность грунтов под давлением;

организуются полигоны для определения нормальных и касательных сил пучения [13];

производятся наблюдения за величиной пучения грунтов с помощью поверхностных марок-реперов, устанавливаемых до начала сезонного промерзания грунта на опытных площадках. Наблюдения за перемещениями поверхности промерзающего грунта ведутся посредством нивелирования марок-реперов в сроки, предусмотренные задачами исследования. Для определения послойной величины пучения используют глубинные марки-репера.

Материалы режимных наблюдений необходимы для прогноза криогенного пучения грунтов, а экспериментальные исследования касательных и нормальных сил пучения для расчета несущей способности свай проектируемых объектов строительства.

Для наблюдений за морозобойным растрескиванием грунтов в районе стационаров выбираются площадки с полигональным рельефом и участки без него, но где при освоении территории прогнозируется морозобойное растрескивание грунтов. Площадки без полигонального рельефа должны, быть размером не менее 50´50 м, на них убирается снег и растительность. Наблюдения ведутся в зимний период.

На площадках с полигональным рельефом выполняется следующий комплекс наблюдений [2]:

измеряется температура воздуха, снега, растительного покрова и грунтов до глубины 2 - 3 м;

измеряются теплопотоки в снежном и растительном покровах для последующего расчета коэффициентов теплопроводности и температуропроводности;

определяется влажность, объемный вес грунта и гранулометрический состав по разрезу;

поперек трещин устанавливаются тонкие проволоки для определения растрескивания грунта под снегом. Обрыв проволоки, соответствующий образованию трещин, фиксируется пропусканием тока;

определяется величина температурных деформаций пород в ходе охлаждения путем измерения ширины естественных морозобойных трещин на поверхности грунта специальными трещиномерами (или динамометрами в искусственно созданных щелях). Температурные деформации грунтов могут быть измерены и в лабораторных условиях.

На участках, где морозобойное растрескивание в естественных условиях не проявляется, но предполагается его развитие при измененных условиях, рекомендуется выполнять тот же комплекс работ, что и на площадках с полигональным рельефом.

По результатам стационарных режимных наблюдений прогнозируется возможность образования морозобойных трещин и параметры полигональной системы трещин.

Для наблюдений за солифлюкцией выбираются опытные площадки с естественным развитием солифлюкционных форм рельефа и площадки, где при освоении территории возможны солифлюкционные процессы. На выбранных площадках рекомендуется комплекс наблюдений, который проводится в летнее время [4]:

определяется скорость протаивания вечномерзлых грунтов с помощью мерзлотомеров или наблюдениями за положением нулевой изотермы;



Документ сокращен, так как он очень большой. Для просмотра полной версии этого документа пройдите по ссылке Бесплатный заказ нужного документа

 
< Пред.   След. >
Полезное: