Проектирование и строительство нормативно-методические документы arrow Автодороги arrow Рекомендации Рекомендации по количественной оценке устойчивости оползневых склонов  
19.11.2018
    
Рекомендации Рекомендации по количественной оценке устойчивости оползневых склонов

Производственный и научно-исследовательский институт
по инженерным изысканиям в строительстве
(ПНИИИС) Госстроя СССР

Рекомендации
по количественной оценке
устойчивости оползневых склонов

Москва Стройиздат 1984

Рекомендации по количественной оценке устойчивости оползневых склонов / ПНИИИС. - М.: Стройиздат, 1984. - 80 с.

Приведены рекомендации по количественной оценке и прогнозу устойчивости склонов равнинных предгорных территорий расчетными и сравнительно-геологическими методами. Охарактеризованы способы оценки и прогноза отдельных оползней и склонов в целом при возможности смещений блоков, пакетов или покровных образований.

Для инженерно-технических работников изыскательских и проектно-изыскательских организаций, выполняющих инженерно-геологические изыскания на оползневых склонах.

Табл. 7, ил. 26

Разработаны ПНИИИС Госстроя СССР (канд. геолог.-минерал. наук И.О. Тихвинский).

Рекомендованы к изданию решением инженерно-геологической секции НТС ПНИИИС Госстроя СССР.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. В настоящих Рекомендациях изложены способы количественной оценки и прогноза (прогнозной оценки) устойчивости оползневых склонов применительно к рассмотрению возможности образования подвижек оползней.

Под оценкой устойчивости при этом понимается определение возможности появления и степени распространенности активных (двигающихся) оползней при инженерно-геологических условиях и действующих нагрузках, наблюдающихся в натурной обстановке при выполнении изысканий (исследований) на оползневых склонах.

Прогноз устойчивости представляет собой либо предсказание возможности появления (или степени распространения) активных оползней на рассматриваемых склонах при последующих ожидаемых изменениях природных условий и воздействий (в результате намечаемого хозяйственного освоения территории и влияния природных процессов) либо предсказание степени распространенности оползней на территориях, для которых известна характеристика инженерно-геологических условий, но оползневая съемка ранее не выполнялась.

1.2. Настоящие Рекомендации составлены для решения задач по оценке и прогнозу устойчивости оползневых склонов за пределами областей распространения мерзлоты и предназначены в основном для равнинных и предгорных территорий. Специфические виды нарушения устойчивости горных склонов (оползни-обвалы, обвалы и др.) при этом не рассматриваются.

1.3. Оползневые склоны, как правило, отличаются от искусственных откосов и неоползневых склонов следующими специфическими особенностями, с учетом которых разработаны настоящие Рекомендации:

сложными геологическими условиями, наличием разнообразных поверхностей ослабления (многие из которых имеют оползневой генезис), большой изменчивостью в течение годового цикла физико-механических свойств пород в приповерхностной зоне и силовых воздействий подземных вод;

сложным рельефом, связанным с прежней деятельностью оползней;

наличием или возможностью развития оползней разных типов, обычно взаимодействующих между собой;

преимущественно относительно малой степенью устойчивости ныне стабильных участков склона;

возможностью нарушения устойчивости склона даже при незначительном изменении воздействия комплекса факторов оползнеобразования, характерных своим комплексным воздействием, существенно изменяющимся во времени (во внутригодовом и многолетнем периодах).

Примечание. Приведенные в Рекомендациях способы оценки и прогноза устойчивости полностью правомерны также и для искусственных откосов и неоползневых склонов.

1.4. В настоящих Рекомендациях подробно охарактеризованы наименее трудоемкие способы количественной оценки и прогноза устойчивости склонов, предлагаемые к использованию при массовых инженерно-геологических изысканиях с целью выполнения требований СНиП по основным положениям инженерных изысканий в строительстве.

Для случаев, когда при изысканиях на объектах большой значимости целесообразно применять более сложные способы оценки и прогноза устойчивости склонов, в Рекомендациях приведены краткие указания.

1.5. Различаются локальные и региональные методы оценки и прогноза устойчивости склонов.

Локальные методы используются для оценки и прогноза устойчивости на конкретных участках (по конкретным створам) в пределах изучаемых склонов. Эти методы являются основными при составлении инженерно-геологического обоснования застройки и других видов хозяйственного освоения склоновых территорий.

Региональные методы предназначены для выявления и прогноза степени распространенности оползней для значительных по площади зон (или групп участков), выделенных на рассматриваемой обширной территории, причем каждая зона (группа участков) должна иметь относительно однородный комплекс факторов оползнеобразования. Положение конкретных оползней в пределах каждой указанной зоны (группы участков) региональными методами не устанавливается. В практике изысканий региональные методы могут использоваться для обоснования перспективных планов хозяйственного освоения больших по площади территорий, характерных наличием оползневых процессов. В качестве вспомогательных региональные методы могут применяться также при крупномасштабном инженерно-геологическом районировании оползневых склонов.

1.6. Количественную оценку и прогноз устойчивости оползневых склонов следует производить применительно к типизации оползней по механизму оползневого процесса (табл. 1) и по генетическому признаку.

По механизму оползневого процесса рекомендуется выделять следующие типы оползней:

оползни сдвига (срезающие, консеквентные, срезающе-консеквентные);

оползни выдавливания;

оползни вязкопластические (оползни-потоки, сплывы, оплывины);

оползни гидродинамического выноса (суффозионные, гидродинамического выпора);

Таблица 1

Схема типизации оползней по механизму оползневого процесса

Тип оползней

Характер развития оползневых деформаций

Вид оползней

Специфические признаки и условия образования оползней

Схема строения оползня

Упоминаемые в литературе другие названия оползней данного типа или вида

Оползни сдвига

Сдвиг с блоковым смещением тела оползни по вогнутой криволинейной или плоской поверхности

Срезающие

Форма в плане - циркообразная или фронтальная.

Подошва оползня: не приурочена к поверхностям ослабления, линия скольжения близка к дуге окружности

1

Оползни скольжения, блоковые, «собственно оползни»

Оползни среза с вращением, оползни срезания

 

 

Консеквентные

преимущественно совпадает с поверхностью (поверхностями) ослабления

2

Оползни соскальзывающие (соскальзывания), структурные, оскользни

 

 

Срезающе-консеквентные

частично совпадает с поверхностью (поверхностями) ослабления

3

Оползни срезающе-соскальзывающие

Оползни выдавливания

В головной части оползня происходит выдавливание приподошвенного слоя из-под вышележащего «жесткого» смещающегося блока, в средней и языковой частях - блоковое смещение по определенной поверхности

-

Форма в плане - фронтальная. Наличие у бровки склона высокого крутого уступа, примыкающего к полосе оползневых накоплений. Присутствие в коренном массиве слабого слоя на отметках ниже подошвы этого уступа. Как правило горизонтальное залегание коренных пород

4

Оползни структурно-пластические, раздавливания, блоковые

Оползни вязкопластические

Смещение происходит в виде вязкого или вязкопластического течения, величины смещения на дневной поверхности больше, чем у подошвы оползня

 

Наличие вблизи поверхности склона сравнительно рыхлых пород, способных к ползучести

 

Оползни течения, консистентные

 

 

Оползни-потоки

Форма в плане вытянутая по оси оползня. В головной части оползня обычно происходит обводнение подземными или поверхностными водами. Подвижки могут повторяться в течение ряда лет и даже десятилетий

5

Земляные потоки

 

 

Сплывы

Форма в плане - обычно округлая. Приурочены к относительно крутым уступам на участках повышенной увлажненности пород у поверхности склона

6

Оползни-сплывы

 

 

Оплывины

Форма в плане - округлая, глубина - в пределах зоны сезонного промерзания. Возникают при весеннем оттаивании, часто при отсутствии подземных вод

7

Оплывы

Оползни гидродинамического выноса

Смещение происходит в виде вытекания песчаных водоносных грунтов с вовлечением в движение пород, залегающих над ними

 

 

 

Оползни выплывания

 

 

Суффозионные оползни

Форма в плане вытянутая или циркообразная. Смещение развивается регрессивно (постепенное распространение головы оползня вверх по склону)

8

Суффозионно-структурные оползни

 

 

Оползни гидродинамического выпора

Смещение происходит единым массивом с последующим растеканием тела оползня

9

 

Оползни внезапного разжижения

Смещение происходит при быстром разрушении структурных связей водонасыщенных глинистых пород с последующим стеканием их вниз по склону (вышезалегающие породы вовлекаются в смещение)

 

Тело оползня быстро продвигается вниз по рельефу на большие расстояния

10

Оползни-потоки в лессовых породах Средней Азии, оползни «норвежского типа»

Условные обозначения: 1, 2 - рельеф соответственно перед началом и после завершения подвижки оползня; 3 - уровень грунтовых вод; 4 - раздавленные и выдавленные породы (в головной части оползня выдавливания); 5 - оползневые накопления, имевшиеся на склоне до образования оползня выдавливания.

оползни внезапного разжижения (возникающие вследствие разрушения структурных связей в слабо уплотненных глинистых породах);

оползни сложного (комбинированного) механизма.

По генетическому признаку в зависимости от фактора-процесса, являющегося определяющим в нарушении устойчивости рассматриваемого склона, различаются оползни нижеперечисленных генетических типов:

абразионные (вызванные размывом берегов, морей, озер, водохранилищ в результате воздействия волнения);

эрозионные (обусловленные подсечкой склонов речной и овражной эрозией);

гидрогеогенные (образовавшиеся в результате воздействия подземных и инфильтрационных атмосферных вод на породы, слагающие склон);

антропогенные (появляющиеся из-за изменения природных условий при различных видах инженерно-хозяйственной деятельности человека);

полигенные (вызванные совместным воздействием различных факторов оползнеобразования).

Примечание. На развитие оползней всех генетических типов оползней обычно оказывает влияние процесс выветривания горных пород.

1.7. Количественной оценке и прогнозу устойчивости склонов должна предшествовать качественная оценка «наличия или возможности возникновения на рассматриваемом склоне оползней определенного типа по механизму оползневого процесса.

Указанная качественная оценка проводится путем сопоставления инженерно-геологической обстановки данного склона со специфическими особенностями оползней разных типов, охарактеризованными в табл. 1.

1.8. При оценке и прогнозе устойчивости склонов, поражаемых гидрогеогенными оползнями, требуется учитывать внутригодовые (сезонные) и многолетние колебания степени обводненности пород, величин напора и гидравлических градиентов подземных вод.

При возможности возникновения абразионных, эрозионных, антропогенных и полигенных оползней прогноз устойчивости склона должен основываться на предшествующем прогнозе воздействия соответствующего оползнеобразующего фактора (абразии, эрозии и т.д.).

1.9. Локальную оценку и локальный прогноз устойчивости с использованием количественных методов целесообразно выполнять после предшествующей качественной оценки устойчивости рассматриваемых оползневых склонов, при которой различаются склоны следующих трех категорий:

устойчивые, - на которых формирование оползней завершилось давно и при сохранении наблюдающейся ныне природной обстановки опасность развития оползневых подвижек отсутствует;

условно устойчивые, - формирование которых закончилось недавно и запас устойчивости еще очень невелик;

неустойчивые, - формирование которых продолжается и сопровождается развитием оползней.

Качественную оценку устойчивости необходимо производить с учетом генетического типа, морфологии (характера рельефа), возраста и стадии формирования склона и его морфологических элементов.

1.10. При локальной оценке и прогнозе устойчивости склонов количественными методами особое внимание следует уделять:

для устойчивых склонов - определению расчетных характеристик прочности пород на сдвиг (с выполнением обратных расчетов устойчивости оползней в массивах аналогичного геологического строения, если оползни наблюдаются на территориях, примыкающих к рассматриваемым устойчивым склонам);

для условно устойчивых склонов - определению («реконструкции») инженерно-геологических условий, при которых ранее происходили оползневые подвижки, и выполнению обратных расчетов устойчивости применительно к условиям возникновения таких подвижек;

для неустойчивых склонов - обратным расчетам устойчивости имеющихся действующих оползней и прогнозу захвата оползневыми подвижками участков, примыкающих к действующим оползням.

1.11. Для осуществления локальной оценки и прогноза устойчивости склонов количественными методами необходимы следующие исходные данные:

характерные профили рельефа (для прогноза с учетом ожидаемых изменений поверхности склона);

положение (границы) относительно однородных по литологии и механическим свойствам слоев и толщ, слагающих склон;

положение поверхностей (или зон) ослабления в массиве склона (трещины различного происхождения, старые и свежие поверхности оползневых смещений, контакты слоев, прослои и зоны малопрочных пород, зоны тектонического дробления);

расчетные показатели ряда физико-механических свойств пород, затрагиваемых оползневыми подвижками (естественной влажности, удельного (объемного) веса, характеристик сопротивления сдвигу, в определенных случаях также и показателей сжимаемости, прочности на раздавливание, геологических характеристик), с учетом ожидаемых изменений этих показателей по сезонным периодам и за многолетний срок и с особенно тщательным выявлением показателей прочности пород на сдвиг по поверхностям и зонам ослабления;

верхние и нижние границы водоносных горизонтов и обводненных зон в массиве пород, гидравлические градиенты и величины напора подземных вод;

типы имеющихся (или возможных в рассматриваемой инженерно-геологической обстановке) оползней по механизму оползневого процесса, границы оползневых тел в плане и по глубине;

интенсивность сейсмических воздействий;

места приложения и величины нагрузок (статических и динамических) от имеющихся на склоне зданий и сооружений;

при прогнозе устойчивости места проявления и интенсивность абразии, линейной эрозии и выветривания, а также характеристики влияния ожидаемой инженерно-геологической деятельности (в том числе характеристика статических и динамических нагрузок в период строительных работ на рассматриваемых склонах).

Примечание. При нижеследующем изложении предполагается, что для изучаемых конкретных склонов все указанные исходные данные получены до начала выполнения количественной локальной оценки и прогноза устойчивости. Способы получения некоторых исходных данных приведены в разд. 4 настоящих Рекомендаций.

1.12. Локальные оценка и прогноз устойчивости склонов количественными методами заключаются, как правило, в решении плоской задачи, при которой рассматриваются условия равновесия массива горных пород шириной 1 м (с вертикальными, боковыми гранями), условно «вырезанного» из массива склона по направлению ожидаемого оползневого смещения (силы, действующие по боковым граням, при этом не учитываются).

Объемная задача, т.е. определение условий равновесия по всей массе оползня, решается в редких случаях обычно для отдельных объектов высокой капитальности, преимущественно путем решения плоской задачи для отдельных участков оползня с последующим суммированием полученных результатов для всего объема оползня.

1.13. Основным количественным показателем, используемым при локальной оценке и прогнозе устойчивости склонов, является коэффициент устойчивости (коэффициент запаса устойчивости), представляющий собой отношение сумм удерживающих и сдвигающих сил, действующих по поверхности предполагаемого смещения оползневого тела (при круглоцилиндрической поверхности смещения отношение сил заменяется отношением моментов тех же сил).

К удерживающим относятся реактивные силы сопротивления грунта сдвигу и, при наличии поддерживающих сооружений, силы воспринимаемого ими оползневого давления, а также те из активных сил, которые направлены в сторону, обратную направлению предполагаемого оползневого смещения. Активные силы включают тангенциальные составляющие веса пород и сооружений, находящихся над поверхностью оползневого смещения, а также фильтрационные силы (в случаях, когда поверхность оползневого смещения пересекает водоносные горизонты), гидростатические силы, вибрационные и сейсмические нагрузки.

Сдвигающими считаются те активные силы, которые направлены по направлению предполагаемого оползневого смещения.

Склон или его элемент (откос, уступ и др.) считается устойчивым, если коэффициент его устойчивости Ку > 1. Величина Ку = 1 соответствует предельному равновесию, наблюдающемуся в моменты начала и завершения оползневого смещения.

1.14. Используемые для вычисления коэффициента устойчивости расчетные величины реактивных сил, определяемые с учетом характеристик физико-механических свойств пород, слагающих склон, а также расчетные величины активных сил должны соответствовать наиболее неблагоприятному, но реально возможному состоянию склона.

1.15. При предусмотренном размещении на склоне зданий и сооружений в соответствии с проектом для обоснования которого выполняются изыскания, величины коэффициента устойчивости склона Ку должны отвечать условию

Ку ³ Ку.доп,

где  - допускаемая величина коэффициента устойчивости склона; пс, Кн и т - соответственно коэффициенты сочетаний нагрузок, надежности и условий работы, определяемые согласно требованиям нормативных документов по проектированию соответствующих видов зданий и сооружений.

1.16. Вычисление коэффициента устойчивости склона выполняется по расчетным створам, количество которых зависит от конкретных инженерно-геологических условий и от местоположения проектируемых на склоне сооружений, а также от стадии проектирования и задач, поставленных проектом освоения рассматриваемого склона.

Расчетные створы задаются по направлению ожидаемого оползневого смещения (как правило, по направлению падения земной поверхности) с захватом по высоте всей потенциально неустойчивой зоны.

1.17. Для одностадийного проектирования (изыскания под обоснование рабочего проекта) и на второй заключительной стадии двухстадийного проектирования (обоснование рабочей документации) расчетные створы следует располагать, как правило, на всех оползнях, имеющихся в натуре или потенциально возможных в рассматриваемых инженерно-геологических условиях, а также на участках проектируемых сооружений.

При этом рекомендуется задавать на каждом оползне как минимум один расчетный створ, приуроченный к оси оползня. Для оползней значительной ширины задаются дополнительные створы (по обеим сторонам от осевого створа) на тех участках, инженерно-геологические условия которых отличаются от осевого створа (по рельефу, геологическому строению, гидрогеологическим условиям, физико-механическим свойствам пород, мощности оползневого тела и протяженности линии оползневого смещения).

При изыскании на первой стадии двухстадийного проектирования (обоснование проекта) на территории, охватываемой проектом, рекомендуется выполнять типизацию склонов по инженерно-геологическим условиям развития оползней и задавать минимум по одному расчетному створу для каждого типа склонов и не менее одного расчетного створа на каждом из участков основных проектируемых сооружений.

При составлении инженерно-геологического обоснования схем развития народного хозяйства и инженерной защиты, разрабатываемых для обширных территорий, расчетные створы следует располагать выборочно на наиболее типичных по природным условиям участках, преимущественно в местах возможного возникновения крупных оползней.

2. ЛОКАЛЬНАЯ ОЦЕНКА УСТОЙЧИВОСТИ СКЛОНОВ

2.1. Локальная количественная оценка устойчивости каждого конкретного оползневого склона осуществляется путем последовательного выполнения:

качественной оценки возможности образования оползней разного типа;

расчетов устойчивости крутых уступов и откосов, имеющихся на склоне ступенчатого профиля;

расчета устойчивости коренного массива всего склона, в том числе для склонов однородного (прямолинейного, вогнутого или выпуклого) профиля;

расчета устойчивости склоновых накоплений (оползневых и делювиально-оползневых).

Расчеты устойчивости склоновых накоплений должны выполняться для всего склона в целом, включая и те случаи, когда территория проектируемого объекта занимает только часть рассматриваемого склона.

2.2. Качественная оценка возможности образования оползней выполняется в соответствии с требованиями п. 1.7 настоящих Рекомендаций на основе сопоставления инженерно-геологических условий рассматриваемого склона со специфическими условиями образования конкретных типов и видов оползней, различающихся по механизму оползневого процесса (см. табл. 1), а также с условиями развития оползней на данном склоне или на имеющихся в районе его расположения других склонах, сходных по инженерно-геологической обстановке.

Указанным методом следует устанавливать места возможного образования оползней определенного типа и вида по механизму оползневого процесса. Одновременно по геоморфологическим признакам, исходя из аналогии с оползнями, зафиксированными в районе выполняемых исследований, определяются ориентировочные размеры (длина и ширина) оползней, возможных на данном склоне.

Для имеющихся на рассматриваемом склоне активных оползней по внешним признакам (оползневые трещины, формы оползневого рельефа) при качественной оценке фиксируются контуры местоположения смещающихся оползневых масс, а также выделяются тип и вид оползней с учетом сведений, указанных в табл. 1.

2.3. Количественная оценка устойчивости участков активных оползней, выделенных по качественным признакам, является излишней (коэффициент устойчивости здесь менее 1). Однако для таких участков рекомендуется выполнять «обратные расчеты устойчивости» с целью определения характеристик сопротивления пород сдвигу (см. разд. 4 настоящих Рекомендаций).

А. РАСЧЕТ УСТОЙЧИВОСТИ КРУТЫХ УСТУПОВ и откосов

2.4. Расчет устойчивости крутых уступов (откосов) осуществляется применительно к тому типу оползня по механизму оползневого процесса, который согласно ранее выполненной качественной оценке (см. п. 2.2) возможен на данном уступе (откосе).

Независимо от результатов качественной оценки для всех крупных уступов (откосов) должен проводиться контрольный расчет устойчивости применительно к возможности образования оползней сдвига.

При этом для оползней сдвига способ расчета зависит от положения поверхностей ослабления в массиве пород, предопределяющего вид ожидаемого оползня (оползень срезающий, консеквентный или срезающе-консеквентный).

Оценка возможности образования срезающих оползней сдвига

2.5. Срезающие оползни сдвига характерны для уступов (откосов) однородного строения (т.е. сложенных породой с одинаковыми однородными физико-механическими свойствами в любых точках грунтового массива), а также при наклоне слоев породы обратно падению поверхности уступа, при горизонтальном напластовании или при наклоне слоев в сторону падения поверхности уступа под углом, меньшим величины угла внутреннего трения пород, слагающих уступ. Очертание поверхности скольжения таких оползней (в вертикальном сечении по направлению оползневого смещения) обычно близко к дуге окружности.

2.6. Для уступов (откосов) с прямолинейным профилем и однородным строением (т.е. при одинаковых значениях физико-механических свойств во всех точках массива пород) при отсутствии водоносных горизонтов в массиве пород оценка устойчивости выполняется в следующем порядке:

определяются критические значения угла внутреннего трения (jкр) и сцепления (Скр) для пород, слагающих рассматриваемый уступ, в соответствии с прил. 1 настоящих Рекомендаций;

находится положение наиболее опасной поверхности скольжения (см. пп. 2.7 - 2.9);

вычисляется коэффициент устойчивости уступа (см. пп. 2.10 - 2.14 настоящих Рекомендаций).

2.7. Положение наиболее опасной поверхности скольжения (в условиях плоской задачи-линии скольжения) для уступа высотой Н и крутизной a при отсутствии дополнительной пригрузки и водоносных горизонтов находится, согласно рекомендациям Г.Л. Фисенко1, следующим образом:

1 Фисенко Г.Л. Устойчивость бортов карьеров и отвалов. - М.: Недра, 1965.

определяется глубина вертикальной трещины отрыва Н90, м, по формуле

                                               (1)

где Скр и jкр - критические величины соответственно сцепления, МПа, и угла внутреннего трения, градусы, определяемые согласно прил. 1 настоящих Рекомендаций; g - удельный (объемный) вес пород, слагающих уступ, МН/м3;

по графику (рис. 1) в зависимости от величин Н/Н90 и j = jкр находится величина а/H90 и затем вычисляется ширина призмы обрушения а (см. прил. 2);

Рис. 1. График Г.Л. Фисенко для определения зависимости между высотой откоса Н и шириной призмы обрушения а

на расстоянии а, от бровки уступа откладываем вертикальный отрезок ВЕ, равный длине трещины отрыва Н90 (см. рис. 2). От точки Е проводим в сторону уступа горизонтальный отрезок ЕК, равный по длине а, и от его концов откладываем ÐЕКГ = ÐКЕГ = 45 + jкр/2. Отрезок ЕГ представляет начальный участок линии скольжения. Дальнейшие операции зависят от величины jкр. При jкр ³ 13 круговая кривая скольжения выходит в подошву уступа (точка М). Для построения этой кривой сначала проводим линию МN под углом (45° - jкр/2) к поверхности уступа АМ. Восстанавливаем перпендикуляры из точки М к линии МN и из середины Т отрезка МF (ТО ^ МF), пересечение этих перпендикуляров (точка О) будет центром круговой линии скольжения. Затем из точки О проводим радиусом ОМ дугу окружности до точки F. Эта дуга и отрезок FЕ будут представлять собой искомую линию скольжения, примыкающую к трещине отрыва.

Если jкр меньше 13°, кривая скольжения выходит на площадку, примыкающую к подошве уступа (см. рис. 3) и пересекает ее под углом (45° - jкр/2). В данном случае построение трещины отрыва и верхнего участка ЕР линии скольжения проводится вышеизложенным способом, а положение нижележащей поверхности скольжения определяется специальным расчетом в соответствии с «Методическими указаниями по определению углов наклона бортов, откосов, уступов и отвалов строящихся и эксплуатируемых карьеров. - Л.: ВНИМИ, 1972.

Рис. 2. Построение поверхности скольжения в однородных породах по методике ВНИМИ

Рис. 3. Схема оползня с линией скольжения, проходящей ниже подошвы уступа

Примечание. Положение наиболее опасной линии скольжения для оценки устойчивости прямолинейных откосов однородного строения можно находить также с использованием графиков В. Феллениуса1 и Янбу2.

1 Справочник по инженерной геологии. Изд. 2-е. М.: Недра, 1974, с. 131.

2 Маслов Н.Н. Механика грунтов в практике строительства (оползни и борьба с ними). - М.: Стройиздат, 1977, с. 215.

2.8. Для уступов (откосов) прямолинейного профиля, а также при их неоднородном строении при наличии обводненности пород в целях определения наиболее опасной линии скольжения срезающих оползней сдвига допускается использовать построение согласно п. 2.7 настоящих Рекомендаций со следующими дополнениями:

для уступов непрямолинейного профиля - с условным спрямлением их профиля;

для уступов неоднородного строения - с проверкой возможности образования срезающе-консеквентного оползня сдвига и с использованием в операциях, регламентируемых п. 2.7 настоящих Рекомендаций, показателей объемного веса, угла внутреннего трения и сцепления, осредненных для всего массива пород, слагающих уступ.

Проверка возможности образования срезающе-консеквентных оползней выполняется в случаях горизонтального залегания пород или при наклоне слоев в сторону падения склона. При этом в соответствии с п. 2.15 настоящих Рекомендаций оценивается возможность частичного совпадения наиболее опасной линии скольжения с плоскостями напластования или выхода этой линии на дневную поверхность в пределах одного из слоев, образованных малопрочными породами.

Осредненные показатели объемного веса gср, угла внутреннего трения jср и сцепления Сср определяются по формуле

                                              (2)

где h1, h2 , ..., hn - мощности слоев, для пород слагающих массив данного уступа (откоса), м;

В1, В2, ..., Вn - значение рассматриваемого показателя (объемного веса, угла внутреннего трения или сцепления) для соответствующего слоя;

Вср - значение рассматриваемого показателя (gср, jср или Сср), осредненного для всего рассматриваемого уступа (откоса).

Примечания: 1. Положение подошвы нижнего (п-го) слоя принимается сначала соответствующим положению подошвы уступа. Если при последующем определении наиболее опасной линии скольжения (см. п. 2.7) она окажется ниже подошвы уступа, подошва нижнего слоя принимается на уровне нижней точки поверхности скольжения и производится уточнение положения этой поверхности с повторным использованием формулы (1) и последующих операций, регламентируемых п. 2.7 настоящих Рекомендаций.

2. При наличии водоносного горизонта в массиве уступа объемный вес обводненных пород на участке, пересекаемом поверхностью скольжения (см. рис. 4), следует определять с учетом сил гидростатического взвешивания.

Пример. 1. Рассчитать среднюю величину сцепления для уступа, высотой 17 м, сложенного четырьмя слоями пород мощностью 5, 2, 7 и 3 м, для которых величины сцепления соответственно равны 1, 0,5, 2 и 0,7 МПа.

По формуле (2) средняя величина сцепления равна:

Рис. 4. Схема оползня с линией скольжения, пересекающей водоносный горизонт

1 - уровень подземных вод; 2 - водоупор

Пример 2. Определить применительно к задаче оценки устойчивости расчетные величины удельного (объемного) веса пород для слоя 2 (см. рис. 4), если объемный вес слагающих его пород выше и ниже уровня подземных вод равен соответственно g1 = 0,016 и g2 = 0,018 МН/м3.

Для зоны NЕK (в которой линия NK является вертикалью, проведенной через точку пересечения водоупора с линией скольжения) расчетная величина удельного (объемного) веса с учетом гидростатического взвешивания составляет g2 - gв, где gв - удельный (объемный) вес воды, равный 0,981 × 10-2 МН/м3 = 0,010 МН/м3. Отсюда для зоны ВЕК расчетный объемный вес равен: 0,018 - 0,010 = 0,008 МН/м3.

Для зоны MNKL, где при оценке устойчивости гидростатическое взвешивание является внутренней силой и в расчете не учитывается, расчетный объемный вес равен: g2 = 0,018 МН/м3. Наконец, для необводненной зоны АВЕNМ расчетный объемный вес составляет g1 = 0,016 МН/м3.

'>

Документ сокращен, так как он очень большой. Для просмотра полной версии этого документа пройдите по ссылке Бесплатный заказ нужного документа

 
< Пред.   След. >
Полезное: