Проектирование и строительство нормативно-методические документы arrow Автодороги arrow Рекомендации Рекомендации по учету ползучести при назначении прочностных характеристик грунтов мало  
25.09.2018
    
Рекомендации Рекомендации по учету ползучести при назначении прочностных характеристик грунтов мало

ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ
НАУЧНО-
ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ
ОСНО
ВАНИЙ И ПОДЗЕМНЫХ СООРУЖЕНИЙ
ИМЕНИ Н.М. ГЕРСЕВАНОВА
ГОССТРОЯ СССР

РЕКОМЕНДАЦИИ
ПО УЧЕТУ ПОЛЗУЧЕСТИ
ПРИ НАЗНАЧЕНИИ ПРОЧНОСТНЫХ
ХАРАКТЕРИСТИК
ГРУНТОВ
МАЛОЙ СТЕПЕНИ ЛИТИФИКАЦИИ
ПРИ ПРОЕКТИРОВАНИИ ОСНОВАНИЙ

МОСКВА - 1979

В Рекомендациях даны предложения по учету ползучести глинистых грунтов малой степени литификации при назначении характеристик прочности. Рекомендации составлены на основании проведенных экспериментальных исследований прочности при различных режимах испытания глинистых грунтов с ненарушенной структурой и структурой, искусственно сформированной в лаборатории. Учтены полученные и приведенные в литературе закономерности уменьшения прочности грунтов со временем для грунтов, находящихся в определенном напряженном состоянии, т.е. при постоянной плотности.

Рекомендации могут быть использованы инженерно-техническими работниками грунтовых лабораторий и проектно-изыскательских отделов.

Рекомендации составлены старшим научным сотрудником Г.В. Сорокиной Института оснований и подземных сооружений имени Н.М. Герсеванова Госстроя СССР. В проведении экспериментальных исследований и подготовке рукописи к печати принимали участие старшие инженеры И. Пчелина и Н.А. Смирнова.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Настоящие рекомендации распространяются на исследование прочности грунтов малой степени литификации и оценку ползучести при назначении прочностных характеристик грунтов оснований.

1.2 К грунтам малой степени литификации относятся осадочные глинистые отложения субаквального происхождения в начальной стадии формирования (илы, сапропели, ленточные глины и суглинки, текучепластичные и мягкопластичные глины) и грунты, образовавшиеся в условиях переменного режима избыточного увлажнения (торф, заторфованный грунт).

1.3. Проектировать основания на указанных грунтах рекомендуется на основе данных изысканий и исследований грунтов, выполненных в соответствии с требованиями СНиП II-9-78 «Инженерные изыскания для строительства. Основные положения» и других нормативных документов по инженерным изысканиям и исследованиям грунтов, утвержденных Госстроем СССР, и с учетом настоящих «Рекомендаций».

1.4. Рекомендации основываются на положении о возможном уменьшении прочности грунтов малой степени литификации под нагрузкой во времени благодаря ползучести. При этом предполагается, что прочность уменьшается, в основном, за счёт уменьшения сцепления. Прочность грунтов малой степени литификации в природном состоянии зависит от скорости приложения касательных напряжений или скорости деформирования грунта и практически не зависит от среднего нормального напряжения σ, т.е. τ = c; φ = 0.

1.5. Рекомендуется прочность (минимальное сцепление) с учетом ползучести или фактора времени называть порогом прочности и обозначать τпр.

1.6. При установлении метода определения прочности грунтов рекомендуется учитывать их физическое состояние в природном залегании, метод строительства и напряженное состояние, возникающее в грунте - основании под нагрузкой. Также необходимо учитывать возможность возникновения в результате действия нагрузки нестабилизированного состояния основания, сложенного грунтами малой степени литификации, вследствие уменьшения касательного напряжения на площадке скольжения за счет образования избыточного давления в поровой воде u.

τ = (σ - u)tgφ + c,

где τ  - касательное напряжение на площадке скольжения;

σ   - нормальное напряжение на площадке скольжения;

φ  - расчетный угол внутреннего трения грунта;

c   - расчетное значение удельного сцепления.

1.7. Для объективного суждения об изменении прочности грунта под нагрузкой во времени рекомендуется определять порог прочности τпр в трехосных приборах при сохранении в течение опыта определенного напряженно-деформированного состояния грунта, т.е. постоянной его плотности-влажности. Для этого следует определять прочность консолидированных образцов, находящихся в стабилизированном состоянии в течение опыта.

Перед определением прочности каждый образец грунта обжимается под заданным гидростатическим давлением, равным среднему нормальному напряжению при испытании.

Величина гидростатического давления определяется проектным заданием.

Определение порога прочности грунта природной плотности возможно на образцах, уплотненных давлением, равным σстр. (горизонтальный участок на компрессионной кривой), или в случае разуплотнения грунта при подъеме образца на поверхность давлением σэ.

Величина σэ устанавливается по методу, изложенному в прил. 1.

1.8. Для определения предельного состояния грунтов малой степени литификации рекомендуется использовать условие прочности Мораулона (прил. 2).

2. НОМЕНКЛАТУРА ГРУНТОВ МАЛОЙ СТЕПЕНИ ЛИТИФИКАЦИИ

2.1. Грунты малой степени литификации следует подразделять по генезису на морские, переходные (лагунные, лиманные, дельтовые) и континентальные (аллювиальные, озерные, болотные).

По литологическому составу эти грунты могут быть глинами, суглинками и супесями; глинистые грунты могут иметь тонкие прослойки песка.

Грунты малой степени литификации полностью водонасыщены (G > 0,85) и имеют скрытотекучую, текучепластичную или мягкопластичную консистенцию, характеризуются тиксотропно-коагуляционными связями (по П.А. Ребиндеру).

Структурные связи грунтов обусловлены молекулярными силами Ван-Дер-Ваальса.

По минералогическому составу глинистых фракций эти грунты могут быть монтмориллонитовыми, каолинитовыми или гидрослюдистыми.

Активные микробиологические процессы, сопровождающие формирование грунтов в начальной стадии, обусловливают в их составе наличие органических веществ,

2.2. К грунтам малой степени литификации, образовавшихся в болотных условиях, относятся торфы и заторфованные грунты. Торфы образуются в отличие от илов и сапропелей при переменном режиме избыточного увлажнения из остатков высших растений.

Для процесса торфообразования характерно наличие окислительных процессов при затрудненном поступлении кислорода, что ведет к образованию гумусовых веществ. Схема классификации грунтов малой степени литификации приведена в табл. 1.


Таблица 1

Схема классификации грунтов малой степени литификации (Поздне- и послеледниковые современные отложения)

Генетические типы

Морские отложения

Лиманные, лагунные, дельтовые отложения

Континентальные отложения

Литологический состав

супесчаные, суглинистые, глинистые илы и супеси, суглинки, глины

Органо-минеральные и органические грунты

Подклассы грунтов

илы

глинистые отложения

илы

глинистые отложения

илы

глинистые отложения

заторфованные грунты

торфы

Скрытотекучие

Текучепластичные

Мягкопластичные

Скрытотекучие

Текучепластичные

Мягкопластичные

Скрытотекучие

Текучепластичные

Мягкопластичные

Условия формирования

В условиях избыточного увлажнения. При активном участии микроорганизмов. Активность микробиологических процессов уменьшается

При переменном режиме избыточного увлажнения. При окислительных процессах, при затрудненном поступлении кислорода

Показатель консистенции JL

 

> 1

1 - 0,75

0,75 - 0,5

> 1

1 - 0,75

0,75 - 0,5

> 1

1 - 0,75

0,75 - 0,5

-

Полная влагоемкость W, %

 

< 500

от 500 до 1400

Минералогический состав глинистой фракции

Монтмориллонитовый, коалинитовый, гидрослюдистый

 

Содержание органических веществ, %

Менее 10

1. до 10

2. от 10 до 90

< 10

< 50

> 50

Характер структурных связей Тиксотропно-коагуляционные

Губчатая структура почти неразложившейся волокнистой массы отмерших растений. При разложении переходит в зернистую с коагуляционными связями

Типичные представители

Илы морских бассейнов:

Черноморского, Балтийского, Каспийского, Тихого океана

Мягкопластичные глины морских бассейнов

Илы Днепро-Бугского лимана, Днестровского лимана и др.

Иольдиевые глины

Илы озера Иссык-Сиваш. Сапропелевые отложения

Озерные ленточные отложения

Заторфованные грунты и торфы Западной Сибири


2.3. Грунты с содержанием органических веществ следует подразделять на гумусированные с содержанием гумуса и заторфованные, содержащие кроме гумуса растительные остатки.

2.4. Грунты малой степени литификации характеризуются высокими коэффициентами пористости и способностью непрерывно менять под нагрузкой характеристики деформируемости, фильтрации и прочности, а также медленным протеканием осадок во времени под постоянной нагрузкой (коэффициент консолидации CV1·107 см2/год).

3. МЕТОДИКА ОПРЕДЕЛЕНИЯ ПОРОГА ПРОЧНОСТИ В УСЛОВИЯХ ПОЛЗУЧЕСТИ ГЛИНИСТЫХ ГРУНТОВ МАЛОЙ СТЕПЕНИ ЛИТИФИКАЦИИ

3.1. Для определения прочности грунтов малой степени литификации с учетом фактора времени в условиях ползучести можно пользоваться теорией течения твердого тела или теорией течения вязкопластических тел с начальным сцеплением (предельным напряжением сдвига), используя обобщенное уравнение Шведова-Бингама:

τ = τпр + ηέ,

где τ  - касательное напряжение;

τпр    - касательное напряжение, соответствующее предельному напряжению сдвига или порогу прочности;

η   - пластическая вязкость;

έ   - градиент скорости деформации сдвига на стадии установившейся ползучести.

Можно обобщить представление о вязкопластическом теле Шведова-Бингама, предположив, что величина порога ползучести определяется условием пластичности Ренкина-Прандтля (Кулона), т.е. начальное сопротивление сдвигу зависит от нормального напряжения.

3.2. Для определения скорости деформирования рекомендуется использовать кривые ползучести в координатах ε ~ t (деформация - время), получаемые при трехосном сжатии или кручении под всесторонним гидростатическим давлением. Эти кривые, состоящие в общем случае из трех характерных участков: неустановившейся ползучести АБ, установившейся ползучести БВ, прогрессирующего течения ВГ или затухающей ползучести (рис. 1), - позволяют по углу наклона участка установившейся ползучести, практически прямолинейного, установить скорость деформации сдвига.

3.3. Для получения достоверных кривых ползучести необходимо соблюдение принципа однородности напряженно-деформированного состояния образца грунта в процессе всего опыта.

Для этого рекомендуется проводить испытание образца в трехосном приборе или в приборе на кручение под гидростатическим давлением в полностью стабилизированном состоянии, при сохранении постоянных среднего нормального напряжения и плотности-влажности по методам, изложенным в Руководстве.*

*) Руководство по определению прочности илов и заторфованных грунтов. М., Стройиздат, 1977.

3.4. Образец грунта перед испытанием на ползучесть рекомендуется выдерживать до стабилизации объемных деформаций под гидростатическим давлением, равным среднему нормальному напряжению.

Для устранения возникающего дополнительного давления в поровой воде при приложении осевой нагрузки в условиях трехосного сжатия всестороннее гидростатическое давление надо уменьшать на 1/3 этой нагрузки.

3.5. Для сохранения постоянной величины осевого напряжения рекомендуется увеличить осевую нагрузку в соответствии с поперечным расширением образца, которое может быть определено из условия несжимаемости материала по формуле:

где F0     - начальная площадь поперечного сечения образца;

h/h = ε - относительная осевая деформация сжатия образца.

Рис 1. Кривые ползучести при различных касательных напряжениях τ

В ходе опыта осевую нагрузку на образец можно увеличивать с помощью рычага специальной конструкции.

3.6. Для построения кривых ползучести рекомендуется испытать серию образцов при заданном среднем нормальном напряжении при различных касательных напряжениях, составляющих 60, 70, 80, 90 % от касательного напряжения при быстром разрушении грунта в тех же условиях. В результате получают семейство кривых ползучести с различным временем до разрушения. При использовании теории течения твердого тела на основе кривых ползучести может быть построена зависимость между касательными напряжениями, вызывающими разрушение грунта, и соответствующим временем разрушения (рис. 2). Эта кривая носит название кривой длительной прочности. Точка кривой на ординате соответствует мгновенному загружению и называется мгновенной прочностью. За прочность в условиях ползучести принимается предел длительной прочности τдл = τпр. За предел длительной прочности принимают напряжения, при которых деформации затухают и разрушения не происходит.

При использовании теории течения вязкопластических тел с начальным сцеплением на участке установившейся ползучести для каждой кривой ползучести определяют скорость деформации (п. 3.2), вычисляют интенсивность деформации или градиент скорости и строят кривую зависимости ε от τ на пределе разрушения (рис. 3). Участок τпр на оси касательных напряжений рекомендуется принимать за порог прочности или прочность в условиях ползучести.

3.7. С целью повышения экономической эффективности исследований за счет сокращения времени испытания и обеспечения возможности определения порога прочности неоднородных грунтов рекомендуется пользоваться методами: а) деформирования, который заключается в разрушении серии образцов грунта при различных постоянных скоростях деформирования в интервале от 4 до 0,01 мм/мин (рис. 4). Точка А - критерий разрушения. Порог прочности определяют по теории течения вязкопластических тел в соответствии с п. 3.6; б) медленного, ступенчатого приложения нагрузки на образец с выдержкой каждой ступени до условной стабилизации деформации. За условную стабилизацию принимается деформация, не превышающая 0,01 мм за 12 ч. Первая ступень нагрузки не должна составлять более 60 %, а каждая последующая ступень не должна увеличиваться более чем на 10 % от величины касательного напряжения при быстром разрушении (мгновенная прочность). За величину порога прочности τпр рекомендуется принимать касательное напряжение, соответствующее ступени нагрузки, предшествующей разрушению (точка А на кривых рис. 5). Метод применим только при условии сохранения определенного напряженно-деформированного состояния в течение всего опыта.

Рис. 2. Зависимость касательного напряжения илов на пределе разрушения от времени при σз = 0,025 МПа:

1 - JL = 1,03, 2 - JL = 0,70

Рис. 3. Зависимость интенсивности касательных напряжении на пределе разрушения от градиента скорости деформирования искусственно подготовленных образцов из глинистого ила.

Опыты проведены: 1 - под постоянной нагрузкой; 2, 3, 4 - с постоянной скоростью деформирования

3.8. Опыты на ползучесть и определение прочности рекомендуется проводить в приборах трехосного сжатия или методом кручения под гидростатическим давлением. Рекомендуемые конструкции приборов приведены в работе института «Руководство по определению прочности илов и заторфованных грунтов».

4. ЗАКОНОМЕРНОСТИ ИЗМЕНЕНИЯ ПРОЧНОСТИ ГЛИНИСТЫХ ГРУНТОВ МАЛОЙ СТЕПЕНИ ЛИТИФИКАЦИИ В ЗАВИСИМОСТИ ОТ ФАКТОРА ВРЕМЕНИ И РЕЖИМА ИСПЫТАНИЯ

4.1. При оценке прочности глинистых грунтов малой степени литификации рекомендуется учитывать реологические свойства, проявляющиеся в виде ползучести и падения прочности под нагрузкой во времени.

Характер ползучести (затухающая и незатухающая) зависит от величины приложенной нагрузки (см. рис. 4).

В каждом семействе кривых ползучести при заданном среднем нормальном напряжении продолжительность ползучести грунта зависит от величины напряжения сдвига. С увеличением напряжения сдвига уменьшается стадия течения с постоянной скоростью, увеличиваются вертикальные деформации стадии неустановившегося течения. Минимальная разница в касательных напряжениях (0,001 МПа) резко увеличивает или уменьшает скорость течения грунта.

4.2. Падение прочности во времени может быть определено по кривой зависимости τ от времени t (см. рис. 2), описываемой для грунтов малой степени литификации уравнениями вида τ = at-1.

Справедливость применения указанной зависимости подтверждается выравниванием кривых τ ~ t при построении их в координатах lnτ ~ lnt (рис. 6, а и б и 7, а и б).

4.3. Зависимости касательных напряжений на пределе разрушения τmax грунтов малой степени литификации от градиента скорости деформирования έ (рис. 8) следует описывать уравнениями типа

τmax = τпр + ηέK1,

где τпр    - порог прочности;

η    - вязкость;

K1   - коэффициент.

Величины τпр, η и K1 в уравнении зависят от влажности (консистенции) и структурной связности грунта.

На определенном участке градиентов скоростей эта зависимость может быть прямолинейной (например, см. рис. 3, прямые 1; 2), т.е. закономерности деформаций при сдвиге подчиняются закону Шведова-Бингама.

Рис. 4. Зависимость относительной деформации от девиатора напряжений σ1 - σ3 для серии искусственно подготовленных образцов из ила при скорости деформирования в мм/мин:

1 - 2; 2 - 1; 3 - 0,5; 4 - 0,25; 5 - 0,10; 6 - 0,01.

Рис. 5. Зависимость относительной деформации ε илов Днепроугского лимана от времени t при загружении ступенями с выдержкой до условной стабилизации 0,01 мм за 12 ч при σ = 0,01 МПа:

опыт 1: а - τ = 0,0054 МПа; б - τ = 0,0063 МПа; в - τ = 0,0074 МПа; г - τ = 0,0085 МПа; д - τ = 0,0096 МПа;

опыт 2: а - τ = 0,0049 МПа; б - τ = 0,0059 МПа; в - τ = 0,0070 МПа; г - τ = 0,0078 МПа; д - τ = 0,0090 МПа

4.4. При оценке прочности глинистых грунтов следует исходить из установленной зависимости уменьшения прочности грунтов малой степени литификации с увеличением времени испытания при любом режиме загружения (постоянная нагрузка, ступенчатое нагружение, монотонное непрерывное увеличение нагрузки с постоянной заданной скоростью деформирования). Прямолинейные зависимости lnτ ~ lnt на пределе разрушения грунтов получены при определении прочности с учетом ползучести во всех режимах загружения, т.е. как при выдерживании образцов под различными постоянными нагрузками (рис. 6 а и б), так и при разрушении образцов с различной скоростью деформирования (рис. 7, а и б).

Величины прочности грунтов малой степени литификации, полученные в условиях ползучести (длительная прочность) и при различных режимах загружения образца (монотонное, ступенчатое), отличаются несущественно (см. табл. 2).

Некоторое приуменьшение величин прочности, полученное при монотонном приложении нагрузки с постоянной скоростью деформирования, объясняется, по-видимому, тиксотропным характером структуры этих грунтов.

Прочность и порог прочности τпр, полученные любыми методами, закономерно увеличиваются с уменьшением коэффициента пористости e и консистенции JL (рис. 9 и 10).

Следовательно, в условиях дренирования скорость объемной ползучести будет уменьшаться с уплотнением грунта в процессе консолидации, а прочность увеличиваться.

4.5. Рекомендуется прочность в условиях ползучести сопоставлять с мгновенной прочностью (быстрое разрушение грунта) и со стандартной прочностью (медленное ступенчатое приложение нагрузки с выдержкой каждой ступени до условной стабилизации деформации < 0,01 мм/мин или с прочностью, полученной при постоянной скорости деформирования 0,1 мм/мин).

Рис. 6. Зависимости касательного напряжения на пределе разрешения от времени в логарифмических координатах для илов и текучепластичных глин при испытании под постоянной нагрузкой

а - 1 - JL = 1,03; 2 - JL = 0,70; б - JL = 0,88

Рис. 7. Зависимости касательного напряжения на пределе разрушения от времени в логарифмических координатах для илов и текучепластичных глин при испытании с постоянной скоростью деформирования:

а - 1 - JL = 1,18; 2 - JL = 1,36; б - JL = 0,83.

Рис. 8. Зависимость касательных напряжений на пределе разрушения от градиента скорости деформирования образцов ила

Наименование грунта

Консистенция JLср

Структурная связность (1 - β)ср

Давление уплотнения σу, МПа

Среднее нормальное напряжение, σз, МПа

Режим приложения нагрузки

С постоянной скоростью деформирования

Ступенями

Постоянная нагрузка на серию образцов

'>

Документ сокращен, так как он очень большой. Для просмотра полной версии этого документа пройдите по ссылке Бесплатный заказ нужного документа

 
< Пред.   След. >
Полезное: