Проектирование и строительство нормативно-методические документы arrow Автодороги arrow АВТОМОБИЛЬНЫЕ ДОРОГИ И МОСТЫ. БИОЛОГИЧЕСКИЕ МЕТОДЫ УКРЕПЛЕНИЯ ОТКОСОВ ИРЕКУЛЬТИВАЦИЯ ЗЕМЕЛЬ, НАРУШАЕ  
22.01.2018
    
АВТОМОБИЛЬНЫЕ ДОРОГИ И МОСТЫ. БИОЛОГИЧЕСКИЕ МЕТОДЫ УКРЕПЛЕНИЯ ОТКОСОВ ИРЕКУЛЬТИВАЦИЯ ЗЕМЕЛЬ, НАРУШАЕ

ФЕДЕРАЛЬНОЕ ДОРОЖНОЕ АГЕНТСТВО МИНИСТЕРСТВА ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное унитарное предприятие «Информационный центр по автомобильным дорогам»

АВТОМОБИЛЬНЫЕ ДОРОГИ И МОСТЫ

БИОЛОГИЧЕСКИЕ МЕТОДЫ УКРЕПЛЕНИЯ ОТКОСОВ И РЕКУЛЬТИВАЦИЯ ЗЕМЕЛЬ, НАРУШАЕМЫХ ПРИ СТРОИТЕЛЬСТВЕ АВТОМОБИЛЬНЫХ ДОРОГ

Обзорная информация

Выпуск 5

Москва 2007

Выходит с 1971 г.

6 выпусков в год

СОДЕРЖАНИЕ

 TOC o "1-3" h z u 1. ВВЕДЕНИЕ

2. ТИПЫ КОНСТРУКТИВНЫХ РЕШЕНИЙ ПО УКРЕПЛЕНИЮ ОТКОСОВ АВТОМОБИЛЬНЫХ ДОРОГ, МЕСТО ИХ БИОЛОГО-ТЕХНИЧЕСКОЙ ЗАЩИТЫ В ОБЩЕМ АРСЕНАЛЕ СПОСОБОВ УКРЕПЛЕНИЙ

3. ОТКОСЫ АВТОМОБИЛЬНЫХ ДОРОГ КАК ОБЪЕКТЫ БИОЛОГО-ТЕХНИЧЕСКОЙ ЗАЩИТЫ

4. БИОЛОГИЧЕСКИЕ АСПЕКТЫ СОЗДАНИЯ КОМПЛЕКСНОЙ ЗАЩИТЫ ОТКОСОВ АВТОМОБИЛЬНЫХ ДОРОГ

5. МЕТОДИКА АВАРИЙНОГО РЕМОНТА ОТКОСОВ АВТОМОБИЛЬНЫХ ДОРОГ В УСЛОВИЯХ ИНТЕНСИВНОГО ДВИЖЕНИЯ ТРАНСПОРТНЫХ СРЕДСТВ

6. ОСНОВЫ РЕКУЛЬТИВАЦИИ ЗЕМЕЛЬ, НАРУШАЕМЫХ ПРИ СТРОИТЕЛЬСТВЕ АВТОМОБИЛЬНЫХ ДОРОГ

7. ОСОБЫЕ СЛУЧАИ ПРИМЕНЕНИЯ БИОЛОГО-ТЕХНИЧЕСКИХ МЕТОДОВ УКРЕПЛЕНИЯ ОТКОСОВ АВТОМОБИЛЬНЫХ ДОРОГ

ЗАКЛЮЧЕНИЕ

СПИСОК ЛИТЕРАТУРЫ 

В данном выпуске обзорной информации рассматриваются биолого-технические методы укрепления откосов автомобильных дорог. Выполнен обзор конструктивных типов укреплений, проанализированы условия их применения. С учетом последних научных исследований откосы автомобильных дорог рассматриваются как природно-технические системы (ПТС). Предлагаются к внедрению методы создания устойчивых ПТС. Для стабилизации состояния окружающей природной системы осуществляется комплексное рассмотрение данных объектов с использованием различных инженерных решений с биологической составляющей. Растения становятся неотъемлемой экологически активной частью строительных конструкций. Рассматривается возможность создания искусственного фитоценоза как единовременно, так и постепенно, увеличивая разнообразие биологического сообщества на территориях, примыкающих к автомобильным магистралям, в зависимости от сложности объекта.

Кроме того, в работе приводятся как классические способы, так и особые случаи применения биологических методов укрепления склонов на участках ландшафта, сопряженных с автомобильной дорогой, а также используемые материалы. Описана технология аварийных ремонтных работ по защите откосов от эрозионных и оползневых процессов. Рассмотрены вопросы разработки проектов рекультивации земель, нарушаемых при строительстве автомобильных дорог.

Обзор подготовили

канд. техн. наук М.И. Афонина

(Московский государственный

строительный университет),

засл. деятель науки Российской Федерации,

д-р техн. наук, профессор,

академик Академии транспорта России

Б.Ф. Перевозчиков (ОАО «Союздорпроект»),

канд. техн. наук В.А. Селиверстов

(ОАО «Гипротрансмост»)

В последние годы в Российской Федерации наметился определенный экономический подъем. Ежегодно увеличивается объем инвестиций в дорожное хозяйство. Для выполнения Федеральной целевой программы «Модернизация транспортной системы России (2002 - 2010 годы)» дорожное хозяйство в 2006 г. получило из федерального бюджета 136 млрд. р. По сравнению с 2005 г. это на 5 % больше и на 20 % больше по сравнению с 2004 г. (по материалам Всероссийской научно-практической конференции «Федеральное дорожное агентство: итоги 2006 года, задачи и перспективы 2007 - 2010 годов», состоявшейся 2 марта в г. Москве). На 2008 г. предусматриваются расходы инвестиционного характера в рамках подпрограммы «Автомобильные дороги» в объеме 211,4 млрд. р. и в 2009 г. - 222,6 млрд. р. (из выступления министра транспорта Российской Федерации И.Е. Левитина на Первой российской общетранспортной выставке-ярмарке «Транспорт России-2007» в г. Сочи).

1. ВВЕДЕНИЕ

Таким образом, в связи со значительным предстоящим увеличением объема строительства автомобильных дорог наиболее актуальное значение имеют вопросы повышения их долговечности и эксплуатационной надежности, непосредственно сопряженные с проблемами повышения качества и экологической безопасности в период строительства и последующей эксплуатации.

При строительстве и эксплуатации автомобильных дорог происходят негативные изменения окружающей среды: деградирует почвенный и разрушается растительный и естественно сложившийся ландшафт. В то же время процессы самовосстановления протекают медленно, зачастую в ограниченных масштабах.

Откосные части дорожной конструкции являются одним из самых уязвимых элементов. В общей структуре методов повышения эксплуатационной надежности и долговечности первостепенное значение должно отводиться методам обеспечения устойчивости земляного полотна. Если такой подход игнорируется, то могут возникать опасные деформации в пределах как всей дорожной конструкции, так и за ее пределами, при этом начальная деформация откоса может являться «спусковым» механизмом прогрессирующего разрушения обочин, покрытия, водоотводных канав, дренажных сооружений, прилегающих естественных склонов.

Все вышесказанное предопределяет необходимость особого отношения к откосам как специальным инженерным сооружениям. В таком аспекте вопросы укрепления откосов на автомобильных дорогах освещаются в работах [1, 2, 3]. Основное внимание в этих работах уделено рассмотрению различных типов конструкций, технологии их устройства и технико-экономическим показателям строительства. В общей структуре этих работ биологическая защита откосов представлена как один из способов укрепления. Однако со времени выхода в свет последней обобщающей работы (1993 г.) прошло уже более 10 лет, между тем накоплен опыт применения биологических типов укрепления откосов и появились новые данные исследований.

Научные основы природно-технических систем (ПТС) обоснованы работами российских ученых (А.Ю. Регеюмом, Г.К. Бондариком, АЛ. Ревзоном, В.А. Королевым, А.А. Цернантом и др.) в последние 25 лет и созданы в основном на базе исследований комплекса геолого-географических наук. Известно, что воздействие автомобильных дорог на окружающую природную среду выражается в расчленении трассой дороги природно-территориальных комплексов, т.е. стабильность ландшафтов и экосистем нарушается на определенный период времени. Далее происходит уравновешивание экосистем, причем, как правило, выходит за рамки строительного периода и устанавливается через некоторый промежуток времени в период постоянной эксплуатации.

С момента начала строительства автомобильная дорога уже представляет собой сложную ПТС, которая постоянно развивается с нарастанием техногенных нагрузок в течение периода своего строительства и продолжает функционировать в конфликтном режиме в эксплуатационный период. Таким образом, с современных научных позиций биолого-техническую защиту, являющуюся неотъемлемой частью автомобильной дороги, можно рассматривать применительно к созданию ПТС.

2. ТИПЫ КОНСТРУКТИВНЫХ РЕШЕНИЙ ПО УКРЕПЛЕНИЮ ОТКОСОВ АВТОМОБИЛЬНЫХ ДОРОГ, МЕСТО ИХ БИОЛОГО-ТЕХНИЧЕСКОЙ ЗАЩИТЫ В ОБЩЕМ АРСЕНАЛЕ СПОСОБОВ УКРЕПЛЕНИЙ

Типы конструктивных решений по укреплению откосов автомобильных дорог отличаются большим разнообразием. Для обеспечения эрозионной устойчивости откосов разработано более 20 видов укреплений, которые выполняются частично вручную, частично механизированным способом. Общая тенденция проектных решений по применению для укрепления откосов методов и конструкций индустриального типа и стремление к максимальной механизации процесса укрепительных работ нашли отражение в работе [4]. Классификация типов укрепления по конструктивным признакам приведена на рис. 1. Не рассматривая подробно конструктивные признаки и технические характеристики материалов, проиллюстрируем наиболее распространенные типы укреплений откосов:

- природными породами, например, глиной или глинобетоном (рис. 2), каменной наброской (рис. 3);

- деревянными конструкциями (рис. 4);

- бетонными и железобетонными плитами (рис. 5);

- габионами (рис. 6);

- геосинтетическими материалами (рис. 7, 8);

- механизированным посевом трав (рис. 9).

Общая классификация типов укреплений по характеру восприятия нагрузок, воздействию гидрометеорологических факторов, условиям функционирования приведена в работе [3]. В этой работе выделены три условия функционирования типов укрепления дорог относительно возможного воздействия паводковых вод: неподтопляемые, подтопляемые и затопляемые. В обзорной информации методы биолого-технической защиты рассмотрены применительно только к двум первым условиям, в условиях затопления эти методы малоэффективны.

Рис. 1. Типы конструктивных решений по укреплению откосов

Рис. 2. Укрепление откосов глиной или глинобетоном:

1 - дренажные окна, выполняемые через каждые 10-20 м;
2 - слой глины или глинобетона толщиной 0,10-0,15м

Рис. 3. Укрепление откоса каменной наброской: а - при отсутствии меженных вод; б - при наличии меженных вод; Δ - технический запас, равный сумме подпора, высоты набега волны на откос плюс 0,5 м

Рис. 4. Деревянные конструкции укрепления откосов

Рис. 5. Укрепление откосов ячеистыми бетонными элементами

Рис. 6. Схемы укрепления откосов (а) и берегов (б) габионами

Рис. 7. Укрепление откоса геосинтетическим материалом

Рис. 8. Укрепление откоса геоячейками:

а - геоячейки из геотекстильных водопроницаемых лент;
б - то же, из полос геомембраны

Рис. 9. Укрепление откосов механизированным посевом трав:

а - откос насыпи; б - откос выемки

При обосновании выбора типа укреплений руководствуются следующей классификацией зон гидрометеорологических воздействий на дорожное полотно и его конструктивные элементы применительно к двум условиям функционирования (рис. 10):

I - зона ударного воздействия атмосферных осадков, стекания поверхностных вод, эрозии, дефляции и других факторов, действующих на поверхность дороги в условиях ее неподтопления;

II - зона концентрации и движения вдоль подошвы дорожного полотна поверхностных вод, стекающих с дороги, и прилегающей к ней местности;

Рис. 10. Зоны гидрометеорологических воздействий на дорожное покрытие применительно к условиям его формирования:

а, б - соответственно неподтопляемые и подтопляемые откосы;

I - VII-зоны воздействия

III - зона паводкового волнообразования и нагона воды;

IV - зона паводкового или постоянного подтопления;

V - зона подтопления от меженных вод;

VI - зона возможного углубления от развития размыва при сбросе паводковых вод вдоль дороги (пойменных насыпей), попятно-эрозионном понижении и течении речного потока в подмостовом русле;

VII - зона возможного динамического, фильтрационного воздействия водного потока, ледохода, карчехода и углубления от развития местного размыва в условиях затопления.

Учитывая характер восприятия временных и постоянных нагрузок, а также воздействий гидрометеорологических факторов, биолого-техническая защита, очевидно, наиболее эффективно может быть реализована применительно к зонам гидрометеорологических воздействий I и II и в некоторых специальных случаях в зоне III.

Систематизация опыта, опубликованного в различных работах, позволяет констатировать, что биолого-техническая защита предназначена для противодействия ударному воздействию и инфильтрации атмосферных осадков, стекания поверхностных вод, эрозии, дефляции и других факторов, действующих на поверхность дороги и проявляющихся в зоне, находящейся выше влияния паводковых воздействий. Также откосные неподтопляемые защитные конструкции предназначены для противодействия и изоляции поверхностных слоев откосов земляного полотна от температурных воздействий.

Принципы и мероприятия, обеспечивающие устойчивое функционирование природно-технического объекта, приведены на рис. 11.

Рис. 11. Схема обеспечения устойчивого функционирования природно-технического объекта

Таким образом, биолого-техническая защита представляет собой комбинацию инженерных и биологических методов, в результате реализации которых создается ПТС, позволяющая сохранять и восстанавливать окружающую среду. Техническая составляющая представляется различного типа строительными конструкциями, образующими матрицу защитного экрана. Назначение матрицы обеспечение устойчивого закрепления биологической составляющей системы для поддержания корнеобитаемого слоя и создание благоприятных условий для развития биологического сообщества на самом сложном начальном этапе жизненного цикла ПТС.

3. ОТКОСЫ АВТОМОБИЛЬНЫХ ДОРОГ КАК ОБЪЕКТЫ БИОЛОГО-ТЕХНИЧЕСКОЙ ЗАЩИТЫ

Автомобильные дороги в пересеченной местности часто проходят в насыпях и выемках, в разных климатических зонах. В зависимости от степени пересеченности местности и категории дороги площадь поверхности откосов может составлять от 180 до 3200 тыс. м2 на 100 км трассы. В ходе строительства часто нарушаются грунтовые слои и формации, перемещаются зеленые насаждения, удаляется растительный слой и изменяется естественный рельеф. Эти изменения приводят к развитию осыпей, вывалов локального скольжения и наиболее опасных эрозионных процессов в районе обочин и полос отвода автомобильных дорог. Неконтролируемая эрозия часто приводит к необходимости коренных изменений укрепляющих конструкций или сооружению дополнительных дорогостоящих устройств.

Насыпи и выемки автомобильных дорог можно рассматривать как природно-техническую систему, состоящую из двух различных по своей природе компонентов: биологического и строительного. Доля биологического и строительного компонента может варьировать, в частном случае ПТС может быть чисто биологической.

Биологическая составляющая ПТС включает растительный грунт и посадочный материал. При этом объем растительного грунта должен быть минимальным, чтобы оптимальным образом обеспечить устойчивое функционирование системы.

Устойчивое развитие биологической составляющей ПТС может быть достигнуто в результате:

- последовательного усложнения видового состава растительного сообщества в активной фазе жизненного цикла ПТС;

- начального запуска ПТС как результата сложного взаимодействия в многовидовом фитоценозе;

- обеспечения фитоценоза достаточным количеством питательных веществ (энергетическая составляющая ПТС).

Стоимость восстановления и содержания поврежденных участков находится в прямой зависимости от объема вынесенного с эрозией грунта. Американскими учеными в шт. Миннесота еще в 1983 г. были обследованы автомобильные дороги общей протяженностью 185 тыс. км, что позволило оценить не только степень эрозии, но и причину ее возникновения и составить рекомендации по предотвращению этого явления.

Обследование проводили дважды: весной после таяния снегов до начала роста трав и осенью после прекращения роста трав до начала заморозков. Всего было выявлено примерно 18 тыс. участков, подверженных эрозии. При этом общий объем эрозионного выноса составил около 3,3 млн. м3, а распределение эрозионных повреждений в зависимости от типа местности приведено в табл. 1.

Таблица 1

Распределение эрозионных повреждений в зависимости от типа местности

Тип местности

Объем выноса, млн. м3

Количество участков

Полувыемка-полунасыпь

1,130

4199/24

Равнина

1,000

7181/40

Выемка

0,890

4672/26

Насыпь

0,232

1602/10

Всего

3,300

17654/100

Примечание. В числителе приведено количество участков в штуках, в знаменателе - в процентах.

Местами, наиболее часто подверженными эрозии, являются дно водоотводных канав (31 %), примыкающие к дороге площади (25 %), внутренние откосы (24 %), внешние откосы (20 %).

Распределение по типам эрозии представляется следующим образом, %:

Размыв                                                                                                                            81,5

Поверхностный снос грунтов с откосов                                                                     16,8

Выветривание                                                                                                               1,7

Выявленные причины возникновения эрозионных склоновых процессов приведены ниже, %.

Недостаточный учет явления эрозионных процессов при проектировании          43,8

Повреждение водоотводных систем                                                                           26,7

Другие причины                                                                                                            29,5

Основной причиной эрозии на прилегающих к дороге площадях (полосах отвода), по мнению американских специалистов, является отсутствие хорошего растительного покрова. Для исправления поврежденных эрозией участков рекомендуется три типа мероприятий [5]:

- обработка почвенного слоя и высев трав (27 %);

- восстановление и улучшение откосов высевом трав (58 %);

- исправление существующих укрепляющих конструкций (15 %).

Эрозионная опасность оценивается потенциальным смывом почвы (т/га в год) и рассчитывается по специальным формулам с учетом балльной оценки климата, рельефа. В общем виде потенциальная опасность эрозии представляется следующей зависимостью:

A = f(B, C, D, E),

где А - потенциальная опасность проявления эрозии;

В - фактор влияния климатических условий территории на проявление эрозии;

С - фактор влияния рельефа на проявление эрозии;

D - фактор влияния почвенного покрова и подстилающих пород на проявление эрозии;

Е - фактор влияния растительного покрова на предотвращение эрозии.

Почвенно-растительный покров на склонах должен быть почвоохранным, исходя из следующего:

- поскольку эрозия вызывается поверхностным стоком вод, то и защита от нее должна предусматривать меры по предупреждению или регулированию склонового стока;

- главным лимитирующим фактором повышения продуктивности растительности для большинства районов страны на склоновых землях является влага, поэтому использование в этих целях атмосферных осадков и вод орошения - важнейшая задача;

- при обеспечении растений влагой резко повышается их почвозащитная функция и таким образом часто в большей мере решается проблема защиты почв от эрозии;

- дополнительно осуществляется охрана от загрязнения вод, стекающих со склонов в речную сеть и водохранилища.

При снеготаянии со склонов часто стекает до 80 - 90 % воды, а при интенсивных ливнях по водонасыщенной почве сток иногда достигает 60 - 70 %. Поэтому необходимо не только удерживать осадки, но и наиболее продуктивно использовать их. Отсюда задача - уменьшить бесполезные потери влаги на физическое испарение с поверхности эродированных склонов, а также снизить коэффициент транспирации, который на смытых участках в связи с обеднением их элементами питания растений значительно больше, чем на несмытых.

Для осуществления земляных работ в придорожной зоне землеотвода может быть использован опыт ведения сельского хозяйства на различных по рельефу землях. Оказывается, что наиболее целесообразно занимать крутые склоны высокопродуктивными пастбищами и закладывать на них сады и виноградники. На крутых склонах вводят севообороты с большим насыщением многолетними травами. После их посева урожай кормовых единиц увеличивается в 1,7 - 2,6 раза и эрозия прекращается полностью.

Учет крутизны склонов при размещении различных типов посевов определяет условия использования почвообрабатывающей техники. При подборе посадочных культур очень важно учитывать почвозащитную способность их в периоды возможного формирования склонового стока. Для максимальной защиты от ливневых осадков следует стремиться подбирать такие культуры, которые в период выпадения наиболее эрозионных ливней имели бы максимальное проективное покрытие и обеспечивали наиболее полную защиту от эрозии. Здесь под проективным покрытием понимается процент площади, занятой проекцией надземных органов, изучаемого вида растений на почву в пределах учетной площади или всей заросли [6].

Устойчивость геосистем зависит от внутренней неоднородности свойств компонентов. Так, разнообразный состав луговых трав делает луг более устойчивым при разных погодных условиях, чем искусственный сенокос с меньшим видовым разнообразием. Выраженный микрорельеф и вариация водно-физических свойств почв также повышают устойчивость почвенного и растительного покровов: в сухие периоды года продуцирование биомассы лучше в понижениях, а во влажных - на микровозвышениях.

Устойчивость геосистемы растет с повышением ее ранга, в этом смысле наименее устойчивой является фация - наименьшая геосистема, характеризуемая однородными условиями месторасположения и местообитания, одним биоценозом. Фации сильнее всего реагируют как на изменение внешних природных условий, так и на деятельность человека. Радикально изменяют их режим природопользования, более крупные геосистемы в меньшей степени подвержены изменениям [7].

Для сравнительной оценки различных вариантов почвозащитной способности севооборотов необходимо вычислять коэффициенты почвозащитной способности отдельных культур. Эти коэффициенты представляют собой отношение проективного покрытия культуры к эрозионному индексу дождевых осадков в данный период. Предпочтение нужно отдавать растениям, у которых плотное проективное покрытие и более развитая корневая система.

Посев многолетних трав, особенно на склонах со смытыми почвами, надо оценить с точки зрения их почвозащитного (насколько они предотвратили смыв почвы) и почвоулучшающего воздействия (накопление в почве гумуса, азота и других элементов) [8].

Влияние растительного покрова достаточно разнообразно. Культуры с мочковатой корневой системой повышают агрегированность и, как следствие, - противоэрозионную стойкость. В этом отношении особенно эффективны многолетние травы, которые увеличивают противоэрозионную стойкость почв в несколько раз за счет своей корневой системы, она связывает отдельные частицы грунта между собой и уменьшает скорость потока у поверхности почвы. Кроме того, корни и растительные остатки, разлагаясь в почве, обогащают ее органическими веществами, что способствует повышению ее противоэрозионной стойкости. Ярусность в травянистом сообществе показана на рис. 12.

Основной почвозащитный эффект оказывают надземные части растений. Они рассеивают кинетическую энергию дождевых капель, предотвращая разрушение структуры поверхностного слоя почвы и образовывая слабую водопроницаемую корку. Эффективность защиты почвы от ударов дождевых капель определяется проективным покрытием растительности. При 90 %-ном проективном покрытии установившееся впитывание воды на карбонатных черноземах и каштановых почвах, например, составляет 1,5 - 2,5 мм/мин, а на оголенных участках - 0,2 - 0,3 мм/мин. Кроме того, растительность, рассеивая кинетическую энергию капель, на порядок снижает транспортирующую способность пластовых потоков.

Рис. 12. Ярусность надземная (а) и подземная (б) в травянистом сообществе

Почвозащитная способность однолетних культур и в меньшей степени многолетних трав изменяется в течение года. Она увеличивается по мере накопления растительной массы и резко падает в осенне-весенний период. Поэтому часто почвозащитную способность определяют по отдельным фазам развития растений. Однако реальная почвозащитная эффективность культуры определяется не только динамикой ее развития, но и внутригодовым распределением эрозионно-опасных ливней [9].

В процессе активного жизненного цикла ПТС (эксплуатационный период), исходя из опыта, накопленного в области луговодства, должны быть учтены следующие факторы:

- урожайность травостоя, который в значительной степени зависит от его ботанического состава;

- внесение удобрений для поддержания растительного покрова должно быть дифференцированным в зависимости от видового состава;

- при внедрении в сеяный травостой дикорастущих видов растений продуктивность фитоценозов падает.

Для стабилизации эрозионных процессов (ветровая и водная эрозия), приводящих к оползням и обвалам, наиболее надежным и целесообразным способом с точки зрения экологии является создание растительного дернового слоя на склонах и откосах.

В формировании радиационного режима растительного покрова его архитектоника является одним из наиболее существенных, но в то же время и наиболее трудно учитываемых факторов. Трудность заключается прежде всего в большом многообразии и сложности структуры растительного покрова. Наиболее важные с точки зрения радиационного режима и фотосинтетической деятельности элементы растительного покрова - листья - имеют различную длину и ширину, отличаются друг от друга по форме, числу (сложные листья состоят из большого числа отдельных листочков) и т.д. Отдельные виды растений также отличаются друг от друга по габитусу, длине, диаметру, количеству ассимилирующей поверхности и т.д. Изучение и сравнение перечисленных особенностей является предметом морфологии растений.

Исходя из методических соображений, фитометрическое описание растительного покрова целесообразно проводить на четырех уровнях: отдельные органы растений, целое растение, одновидовая группировка и растительное сообщество. Каждый более высокий уровень содержит в себе элементы предыдущих уровней, но, не являясь простой совокупностью элементов нижнего уровня, имеет и свои специфические закономерности.

Густой и мощный растительный покров, как известно, поглощает около 60 - 90 % падающей коротковолновой радиации солнца и неба, 10 - 30 % отражается и лишь 5 - 10 % проходит сквозь растительный покров и поглощается почвой. Кроме того, растительный покров поглощает из воздуха большое количество углекислого газа и выделяет в атмосферу кислород. Существенна роль растительного покрова также в формировании водно-теплового режима подстилающей поверхности. Благодаря этим особенностям, растительный покров является активным климатообразующим фактором и наличие его заметно влияет на формирование и ход физических процессов в атмосфере, особенно в приземном слое [10].

4. БИОЛОГИЧЕСКИЕ АСПЕКТЫ СОЗДАНИЯ КОМПЛЕКСНОЙ ЗАЩИТЫ ОТКОСОВ АВТОМОБИЛЬНЫХ ДОРОГ

Типы укрепления откосов автомобильных дорог общего пользования назначают, как правило, применительно к типовым конструкциям, разработанным Союздорпроектом в 1988 г., или на основе индивидуального проектирования с учетом фактических временных и постоянных нагрузок, а также возможного влияния гидрометеорологической и природоохранной составляющих. При этом должен производиться анализ применимости типовых решений на предмет соответствия категории автомобильной дороги [11], кроме того, принимают во внимание и учитывают целый комплекс факторов и условий:

- вид укрепляемого сооружения (насыпь или выемка);

- требуемый срок службы защитного укрепления;

- род грунта, из которого сложено укрепляемое сооружение, его свойства и состояние;

- род грунта основания сооружения (геологические разрезы основания укрепляемого земляного сооружения), его свойства и состояние, возможность просадки насыпи на слабом основании;

- высоту и крутизну укрепляемого откоса;

- местные климатические условия и метеорологическую обстановку, например, интенсивность и продолжительность ливней, количество выпадающих осадков и распределение их по месяцам, абсолютное значение летних и зимних температур, годовой переход температуры через ноль, сезонную глубину промерзания грунта, толщину снегового покрова и его устойчивость во времени, длительность безморозного периода года, а также скорость и направление ветров по различным сезонам года;

- местные топографические условия, абсолютные отметки участка работ над уровнем моря, экспозиции склонов, по которым проложена дорога, экспозицию откосов укрепляемого земляного полотна;

- местные гидрологические условия, например, глубину и длительность периода подтопления откосов при наивысшем расчетном и низшем уровнях воды, амплитуду колебаний уровней воды, скорость течения, высоту ветровой и судовой волн, высоту набега волны на откос данной крутизны, ледовый режим, наличие карчехода;

- степень агрессивности среды для применяемых укрепительных материалов;

- вид и количество имеющихся строительных местных материалов для укрепительных работ, возможных условий их разработки, транспортировки, дальность возки, стоимость;

- наличие местной рабочей силы и ее квалификацию;

- возможности максимальной механизации трудоемких процессов укрепительных работ;

- заданный срок и период года для выполнения строительных работ.

Анализ накопленного опыта по защите откосов биологическими методами, оценка их чувствительности к воздействию природных и антропогенных факторов позволили сформулировать принципы выбора экологически устойчивой конструкции укрепления откосов (рис. 13).

Рис. 13. Принципы выбора экологически устойчивой конструкции откосов

Принципы обоснования применения таких биологических типов укрепления откосов, как посев трав, одерновка и другие применительно к типовому проекту Союздорпроекта заключаются в следующем.

Пользуясь табл. 2 и картой соотнесения территории СНГ к дорожно-климатическим зонам (СНиП 2.05.02-85), устанавливают принципиальную возможность применения типов биолого-технической защиты. Область применения отдельных типов укреплений в классификации, обобщенной Б.Ф. Перевозниковым (Союздорпроект), обусловлена предельно допустимыми значениями следующих факторов гидрометеорологических воздействий на откосы (табл. 3): длительностью подтопления, высотой волны, толщиной льда, ледоходом (его характеристикой по интенсивности, размерами льдин), лесоплавом и карчеходом (применительно к отдельным деревьям, их длине и диаметру).

После установления границ применения того или иного типа укрепления подбирают основные характеристики многолетних трав. Для этого следует пользоваться картой-схемой природных зон (рис. 14) и табл. 4.

При применении в качестве защиты откосов посадки кустарника или лесопосадок в качестве вспомогательного обосновывающего материала рекомендуется использовать данные табл. 5 о районировании для целей озеленения с учетом свойств пород деревьев и кустарников по отношению к почвам, дымо- и газоустойчивости, порайонное распределение которых представлено в табл. 6 [12].

Таблица 2

Область применения биологических конструкций

Тип укрепления

Насыпь

Выемка

Высота откоса, м

Крутизна откоса, м

Климатическая зона

Число пластичности грунта

Высота откоса, м

Крутизна откоса, м

Климатическая зона

Число пластичности грунта

1

2

3

4

5

6

7

8

9

Механизированный посев трав по слою растительного грунта, в том числе по торфопесчаной смеси

2(3)

1,5-4

I-IV

-

2

1,5-6

I-IV

 

2(3)-12

1,5-2

2-12

1,5-2

<1; 1-27

>12

По расчету

>12

По расчету

>27

Гидропосев семян трав по грунту, слагающему откос (гидропосев с мульчированием)

2(3)

1,5-4

II-IV

<1; 1-27

2

1,5-6

II-IУ

<1; 1-27

2(3)-12

1,5-2

2-12

1,5-2

>27

>12

 

По расчету

Одерновка:

 

 

 

 

 

 

 

 

сплошная

>12

По расчету

II-III

1-27

-

-

II-III

-

в клетку

6-12

1,5-2

1-17

2-12

1,5-2

1-17

>12

По расчету

>12

По расчету

Посадка кустарника сплошная

6-12

1,5-2

II-III

12-27

>12

По расчету

II-IV

12-27

>12

По расчету

Примечания: 1. Гидропосев семян трав не применяется на откосах из намываемых песков. 2. В скобках указана высота насыпей для дорог I - III категорий.

 


Таблица 3

Область применения отдельных типов укреплений

Тип укрепления

Предельно допустимые критерии факторов гидрометеорологических воздействий

Длительность подтопления, сут

Скорость течения, м/с

Высота волны, м

Толщина льда, м

Характер

ледохода

лесосплава, карчехода

Растительный грунт с полимерной сеткой или геотекстилем и посадкой ивовых черенков

Не регламентирована

Не регламентирована

0,5

0,2

Слабый, отдельные льдины до 5 м2

Не регламентирован

Цементогрунтовые решетки с заполнением ячеек растительным грунтом

То же

То же

0,1-0,3

Не регламентирована

Не регламентирован

То же

Сборные решетчатые конструкции с заполнением ячеек растительным грунтом

От 20 до 40

-"-

0,3-0,5

Тоже

То же

-"-

Одерновка:

 

 

 

 

 

 

сплошная

Менее 20

До 1,2

До 0,3

-

Отсутствует

Отсутствует

в клетку

Менее 20

До 0,6

До 0,2

-

То же

То же

Посадка кустарника сплошная

Менее 20

До 2,0

'>

Документ сокращен, так как он очень большой. Для просмотра полной версии этого документа пройдите по ссылке Бесплатный заказ нужного документа

 
< Пред.   След. >
Полезное: